版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下面是由一些完全相同的小立方塊搭成的幾何體從三個方向看到的形狀圖.搭成這個幾何體所用的小立方塊的個數(shù)是()A.個 B.個 C.個 D.個2、往直徑為78cm的圓柱形容器內裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm3、如圖,將△OAB繞點O逆時針旋轉80°得到△OCD,若∠A的度數(shù)為110°,∠D的度數(shù)為40°,則∠AOD的度數(shù)是()A.50° B.60° C.40° D.30°4、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.5、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.6、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.7、如圖,在中,,,將繞點C逆時針旋轉90°得到,則的度數(shù)為()A.105° B.120° C.135° D.150°8、如圖,在矩形ABCD中,點E在CD邊上,連接AE,將沿AE翻折,使點D落在BC邊的點F處,連接AF,在AF上取點O,以O為圓心,線段OF的長為半徑作⊙O,⊙O與AB,AE分別相切于點G,H,連接FG,GH.則下列結論錯誤的是()A. B.四邊形EFGH是菱形C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、皮影戲是一種以獸皮或紙板做成的人物剪影,在燈光照射下用隔亮布進行表演的民間戲?。硌菡咴谀缓蟛倏v剪影、演唱,或配以音樂,具有濃厚的鄉(xiāng)土氣息.“皮影戲”中的皮影是______(填寫“平行投影”或“中心投影”)2、如圖,在平行四邊形中,,,,以點為圓心,為半徑的圓弧交于點,連接,則圖中黑色陰影部分的面積為________.(結果保留)3、林業(yè)部門要考察某種幼樹在一定條件下的移植成活率,下表是這種幼樹在移植過程中的一組數(shù)據(jù):移植的棵數(shù)n10001500250040008000150002000030000成活的棵數(shù)m8651356222035007056131701758026430成活的頻率0.8650.9040.8880.8750.8820.8780.8790.881估計該種幼樹在此條件下移植成活的概率為_______.4、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.5、在圓內接四邊形ABCD中,,則的度數(shù)為______.6、第24屆世界冬季奧林匹克運動會,于2022年2月4日在中國北京市和河北省張家口市聯(lián)合舉行,其會徽為“冬夢”,這是中國歷史上首次舉辦冬季奧運會.如圖,是一幅印有北京冬奧會會徽且長為3m,寬為2m的長方形宣傳畫,為測量宣傳畫上會徽圖案的面積,現(xiàn)將宣傳畫平鋪,向長方形宣傳畫內隨機投擲骰子(假設骰子落在長方形內的每一點都是等可能的),經(jīng)過大量重復投擲試驗,發(fā)現(xiàn)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,由此可估計宣傳畫上北京冬奧會會徽圖案的面積約為______.7、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.三、解答題(7小題,每小題0分,共計0分)1、如圖,在中,,以AC為直徑的半圓交斜邊AB于點D,E為BC的中點,連結DE,CD.過點D作于點F.(1)求證:DE是的切線;(2)若,,求的半徑.2、如圖,已知AB是⊙O的直徑,,連接OC,弦,直線CD交BA的延長線于點.(1)求證:直線CD是⊙O的切線;(2)若,,求OC的長.3、如圖,是由若干個完全相同的小正方體組成的一個幾何體.從左面、上面觀察如圖所示的幾何體,分別畫出你所看到的平面圖形.4、如圖,在⊙O中,弦AC與弦BD交于點P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.5、為堅持“五育并舉”,落實立德樹人根本任務,教育部出臺了“五項管理”舉措.我校對九年級部分家長就“五項管理”知曉情況作調查,A:完全知曉,B:知曉,C:基本知曉,D:不知曉.九年級組長將調查情況制成了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.請根據(jù)圖中信息,回答下列問題:(1)共調查了多少名家長?寫出圖2中選項所對應的圓心角,并補齊條形統(tǒng)計圖;(2)我校九年級共有450名家長,估計九年級“不知曉五項管理”舉措的家長有多少人;(3)已知選項中男女家長數(shù)相同,若從選項家長中隨機抽取2名家長參加“家校共育”座談會,請用列表或畫樹狀圖的方法,求抽取家長都是男家長的概率.6、為了引導青少年學黨史,某中學舉行了“獻禮建黨百年”黨史知識競賽活動,將成績劃分為四個等級:A(優(yōu)秀)、B(優(yōu)良)、C(合格)、D(不合格).小李隨機調查了部分同學的競賽成績,繪制成了如下統(tǒng)計圖(部分信息未給出):(1)小李共抽取了名學生的成績進行統(tǒng)計分析,扇形統(tǒng)計圖中“優(yōu)秀”等級對應的扇形圓心角度數(shù)為,請補全條形統(tǒng)計圖;(2)該校共有2000名學生,請你估計該校競賽成績“優(yōu)秀”的學生人數(shù);(3)已知調查對象中只有兩位女生競賽成績不合格,小李準備隨機回訪兩位競賽成績不合格的同學,請用樹狀圖或列表法求出恰好回訪到一男一女的概率.7、如圖,在直角坐標平面內,已知點A的坐標(﹣2,0).(1)圖中點B的坐標是______;(2)點B關于原點對稱的點C的坐標是_____;點A關于y軸對稱的點D的坐標是______;(3)四邊形ABDC的面積是______;(4)在y軸上找一點F,使,那么點F的所有可能位置是______.-參考答案-一、單選題1、D【分析】從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個正方體,第二層有1個正方體,所以搭成這個幾何體所用的小立方塊的個數(shù)是6,故選D.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.2、C【分析】連接,過點作于點,交于點,先由垂徑定理求出的長,再根據(jù)勾股定理求出的長,進而得出的長即可.【詳解】解:連接,過點作于點,交于點,如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點睛】本題考查了垂徑定理、勾股定理等知識,解題的關鍵是根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.3、A【分析】根據(jù)旋轉的性質求解再利用三角形的內角和定理求解再利用角的和差關系可得答案.【詳解】解:將△OAB繞點O逆時針旋轉80°得到△OCD,∠A的度數(shù)為110°,∠D的度數(shù)為40°,故選A【點睛】本題考查的是三角形的內角和定理的應用,旋轉的性質,掌握“旋轉前后的對應角相等”是解本題的關鍵.4、C【分析】根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機抽取一個球是黃球的概率是.故選C.【點睛】本題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關鍵.5、C【詳解】解:選項A是軸對稱圖形,不是中心對稱圖形,故A不符合題意;選項B不是軸對稱圖形,是中心對稱圖形,故B不符合題意;選項C既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項D是軸對稱圖形,不是中心對稱圖形,故D不符合題意;故選C【點睛】本題考查的是軸對稱圖形的識別,中心對稱圖形的識別,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關鍵,軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合;中心對稱圖形:把一個圖形繞某點旋轉后能與自身重合.6、C【分析】如圖所示,連接CP,由切線的性質和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質,切線長定理,等腰直角三角形的性質與判定,勾股定理,熟知切線長定理是解題的關鍵.7、B【分析】由題意易得,然后根據(jù)三角形外角的性質可求解.【詳解】解:由旋轉的性質可得:,∴;故選B.【點睛】本題主要考查旋轉的性質及三角形外角的性質,熟練掌握旋轉的性質及三角形外角的性質是解題的關鍵.8、C【分析】由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根據(jù)切線長定理得到AG=AH,∠GAF=∠HAF,進而求出∠GAF=∠HAF=∠DAE=30°,據(jù)此對A作出判斷;接下來延長EF與AB交于點N,得到EF是⊙O的切線,ANE是等邊三角形,證明四邊形EFGH是平行四邊形,再結合HE=EF可對B作出判斷;在RtEFC中,∠C=90°,∠FEC=60°,則EF=2CE,再結合AD=DE對C作出判斷;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不難判斷D.【詳解】解:由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切線,點G、H分別是切點,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正確,不符合題意;延長EF與AB交于點N,如圖:∵OF⊥EF,OF是⊙O的半徑,∴EF是⊙O的切線,∴HE=EF,NF=NG,∴△ANE是等邊三角形,∴FG//HE,F(xiàn)G=HE,∠AEF=60°,∴四邊形EFGH是平行四邊形,∠FEC=60°,又∵HE=EF,∴四邊形EFGH是菱形,故B正確,不符合題意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正確,不符合題意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C錯誤,符合題意.故選C.【點睛】本題是一道幾何綜合題,考查了切線長定理及推論,切線的判定,菱形的定義,含30的直角三角形的性質,等邊三角形的判定和性質,翻折變換等,正確理解翻折變換及添加輔助線是解決本題的關鍵.二、填空題1、中心投影【分析】根據(jù)平行投影和中心投影的定義解答即可.【詳解】解:“皮影戲”中的皮影是中心投影.故答案是中心投影.【點睛】本題主要考查了平行投影和中心投影,中心投影是指把光由一點向外散射形成的投影,平行投影是在一束平行光線照射下形成的投影.2、【分析】過點C作于點H,根據(jù)正弦定義解得CH的長,再由扇形面積公式、三角形的面積公式解題即可.【詳解】解:過點C作于點H,在平行四邊形中,平行四邊形的面積為:,圖中黑色陰影部分的面積為:,故答案為:.【點睛】本題考查平行四邊形的性質、扇形面積等知識,是基礎考點,掌握相關知識是解題關鍵.3、0.880【分析】大量重復實驗的情況下,當頻率呈現(xiàn)一定的穩(wěn)定性時,可以用這一穩(wěn)定值估計事件發(fā)生的概率,據(jù)此可解.【詳解】解:大量重復實驗的情況下,當頻率呈現(xiàn)一定的穩(wěn)定性時,可以用這一穩(wěn)定值估計事件發(fā)生的概率,從上表可以看出,頻率成活的頻率,即穩(wěn)定于0.880左右,∴估計這種幼樹移植成活率的概率約為0.88.故答案為:0.880.【點睛】此題主要考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.4、【分析】根據(jù)題中點的坐標可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設點,根據(jù)切線的性質及勾股定理可得,由其非負性即可得.【詳解】解:如圖所示:當點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設點,在中,,,∴,在中,,∴,則,當時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質及勾股定理的應用,理解題意,作出相應圖形求出解析式是解題關鍵.5、110°【分析】根據(jù)圓內接四邊形對角互補,得∠D+∠B=180°,結合已知求解即可.【詳解】∵圓內接四邊形對角互補,∴∠D+∠B=180°,∵∴∠D=110°,故答案為:110°.【點睛】本題考查了圓內接四邊形互補的性質,熟練掌握并運用性質是解題的關鍵.6、0.9【分析】根據(jù)題意可得長方形的面積,然后依據(jù)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,總面積乘以頻率即為會徽圖案的面積.【詳解】解:由題意可得:長方形的面積為,∵骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,∴會徽圖案的面積為:,故答案為:.【點睛】題目主要考查根據(jù)頻率計算滿足條件的情況,理解題意,熟練掌握頻率的計算方法是解題關鍵.7、2【分析】連接OC,利用半徑相等以及三角形的外角性質求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點睛】本題考查了垂徑定理和含30°角的直角三角形的性質.熟練掌握垂徑定理是解題的關鍵.三、解答題1、(1)見解析(2)【分析】(1)連接,先根據(jù)等腰三角形的性質可得,再根據(jù)圓周角定理可得,然后根據(jù)直角三角形的性質可得,根據(jù)等腰三角形的性質可得,從而可得,最后根據(jù)圓的切線的判定即可得證;(2)連接,先利用勾股定理可得,設的半徑為,從而可得,再在中,利用勾股定理即可得.(1)證明:如圖,連接,,,是的直徑,,,點是的中點,,,,即,又是的半徑,是的切線;(2)解:如圖,連接,,,設的半徑為,則,在中,,即,解得,故的半徑為.【點睛】本題考查了圓周角定理、等腰三角形的性質、圓的切線的判定、勾股定理等知識點,熟練掌握圓周角定理和圓的切線的判定是解題關鍵.2、(1)見解析;(2)【分析】(1)連接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,從而可證得△OBC≌△ODC,即可證得CD是⊙O的切線;(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,從而可得,則可求得OC的長.【詳解】(1)連接OD,∵,∴.又∵,∴,∴.在與中,∴,∴.又∵,∴,∴是的切線.(2)∵,∴,∴,∴.又∵,∴,∴,∴,∴,∴,∴OC=15【點睛】本題是圓的綜合,它考查了切線的判定,三角形全等的判定與性質,相似三角形的判定與性質等知識;證明圓的切線時,往往作半徑.3、見解析【分析】根據(jù)幾何體的三視圖畫法作圖.【詳解】解:如圖,.【點睛】此題考查了畫小正方體組成的幾何體的三視圖,正確掌握幾何體的三視圖的畫圖方法是解題的關鍵.4、(1)證明見解析;(2).【分析】(1)連接,先證出,再根據(jù)圓周角定理可得,然后根據(jù)等腰三角形的判定即可得證;(2)連接,并延長交于點,連接,過作于點,先根據(jù)線段垂直平分線的判定與性質可得,再根據(jù)線段的和差、勾股定理可得,然后根據(jù)直角三角形全等的判定定理證出,根據(jù)全等三角形的性質可得,最后在中,利用勾股定理可得的長,從而可得的長,在中,利用勾股定理即可得.【詳解】證明:(1)如圖,連接,,,,即,,;(2)連接,并延長交于點,連接,過作于點,,,是的垂直平分線,,,,,在和中,,,,設,則,在中,,即,解得,在中,,即的半徑為.【點睛】本題考查了圓周角定理、直角三角形全等的判定定理與性質、勾股定理、垂徑定理等知識點,較難的是題(2),通過作輔助線,構造全等三角形和直角三角形是解題關鍵.5、(1)50,,圖見解析(2)36(3)【分析】(1)利用A選項的人數(shù)和A選項所占的百分數(shù)求解調查的家長人數(shù),再由B選項所占的百分數(shù)求解B選項的人數(shù),進而可求出D選項的人數(shù),即可補全條形統(tǒng)計圖,再求出D選項所占的百分數(shù)即可求得D選項所對應的圓心角;(2)根據(jù)家長總人數(shù)乘以D選項所占的百分數(shù)即可求解;(3)根據(jù)(1)中求出的D選項人數(shù)可求得男女家長數(shù),再用列表法求解即可.(1)解:家長總人數(shù):11÷22%=50(人),B選項人數(shù):50×40%=20(人),D選項人數(shù):50-11-20-15=4(人),D選項所占的百分數(shù)為4÷50=8%,D選項所對的圓心角為360°×8%=28.8°,答:一共調查了50名家長,選項圓心角為,補全條形統(tǒng)計圖如圖:(2)解:450×8%=36(人),答:估計九年級“不知曉五項管理”舉措的家長有36人;(3)解:D選項共4人,則男女家長各2人,從中抽取2人,畫樹狀圖為:由圖可知,一共有12種等可能的結果,其中都是男家長的有2種,∴抽取家長都是男家長的概率是.【點睛】本題考查條形統(tǒng)計圖和扇形統(tǒng)計圖的信息關聯(lián)、用樣本估計總體、用列表或畫樹狀圖法求概率,能從條形統(tǒng)計圖和扇形統(tǒng)計圖中獲取有效信息是解答的關鍵.6、(1)100,126°,條形統(tǒng)計圖見解析;(2)700;(3)【分析】(1)根據(jù)C等級的人數(shù)和所占比可求出抽取的總人數(shù),用A等級的人數(shù)除以抽取的總人數(shù)乘以360°可得A等級對應扇形圓心角的度數(shù),用抽取的總人數(shù)乘以B等級所占的百分比得B等級的人數(shù),用抽取的總人數(shù)減去A、B、C等級的人數(shù)得出D等級人數(shù),即可補全條形統(tǒng)計圖;(2)用2000乘以A等級
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026廣東深圳市何香凝美術館應屆高校畢業(yè)生招聘1人參考考試題庫附答案解析
- 2026廣東省城鄉(xiāng)規(guī)劃設計研究院科技集團股份有限公司招聘(馬向明大師工作室)參考考試題庫附答案解析
- 2026南昌鐵路裝備制造有限公司生產(chǎn)工藝類外包人員招聘1人參考考試題庫附答案解析
- 2026年度濟南市天橋區(qū)所屬事業(yè)單位公開招聘初級綜合類崗位人員(65人)備考考試題庫附答案解析
- 2026吉林松原市生態(tài)環(huán)境局所屬事業(yè)單位選拔10人參考考試題庫附答案解析
- 2026浙江寧波市慈溪市附海鎮(zhèn)人民政府招聘編外人員3人參考考試題庫附答案解析
- 2026遼寧鞍山市臺安縣新公益性崗位招聘13人參考考試試題附答案解析
- 鋁粉生產(chǎn)現(xiàn)場管理制度
- 工地安全生產(chǎn)周例會制度
- 飼料廠生產(chǎn)加工制度
- 2025中國電信股份有限公司重慶分公司社會成熟人才招聘筆試考試參考題庫及答案解析
- 交通安全企業(yè)培訓課件
- 復旦大學-2025年城市定制型商業(yè)醫(yī)療保險(惠民保)知識圖譜
- 砌筑施工安全教育培訓課件
- 客運索道施工方案
- GB/T 7122-2025高強度膠粘劑剝離強度的測定浮輥法
- 人教版七年級數(shù)學上冊 第四章《整式的加減》單元測試卷(含答案)
- 五常市水稻種植技術規(guī)程
- 2025年公務員類社區(qū)禁毒專職員參考題庫含答案解析
- 軍考真題數(shù)學試卷
- 集團財務經(jīng)理年終總結
評論
0/150
提交評論