版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖南省津市市中考數(shù)學真題分類(平行線的證明)匯編專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,有以下四個條件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的條件的個數(shù)有(
)A.1 B.2 C.3 D.42、如圖,下列條件中,能判斷直線a∥b的有()個.①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°A.1 B.2 C.3 D.43、如圖,∠B=∠C,則∠ADC與∠AEB的大小關系是(
)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小關系不確定4、下面是投影屏上出示的搶答題,需要回答橫線上符號代表的內(nèi)容.則回答正確的是()已知:如圖,∠BEC=∠B+∠C.求證:AB∥CD.證明:延長BE交※于點F,則∠BEC=180°﹣∠FEC=◎+∠C.又∠BEC=∠B+∠C,得∠B=▲.故AB∥CD(@相等,兩直線平行).A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB5、如圖,把△ABC沿EF對折,折疊后的圖形如圖所示,,,則的度數(shù)為(
)A. B. C. D.6、如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°7、如圖點E在BC的延長線上,則下列條件中,不能判定ABCD的是(
)A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°8、將一副三角尺按如圖所示的方式擺放,則的大小為(
)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,點D是△ABC兩條角平分線AP、CE的交點,如果∠BAC+∠BCA=140°,那么∠ADC=_____°.2、下圖是某工人加工的一個機器零件(數(shù)據(jù)如圖),經(jīng)過測量不符合標準.標準要求是:,且、、保持不變?yōu)榱诉_到標準,工人在保持不變情況下,應將圖中____(填“增大”或“減小”)_____度.3、如圖,點O是△ABC的三條角平分線的交點,連結(jié)AO并延長交BC于點D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點N,OH⊥BC于點H,有下列結(jié)論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號)4、如圖,則∠A+∠B+∠C+∠D+∠E的度數(shù)是__.5、如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.6、一大門欄桿的平面示意圖如圖所示,BA垂直地面AE于點A,CD平行于地面AE,若∠BCD=150°,則∠ABC=_____度.7、將△ABC沿著DE翻折,使點A落到點A′處,A′D、A′E分別與BC交于M、N兩點,且DEBC.已知∠A′NM=27°,則∠NEC=_____.三、解答題(7小題,每小題10分,共計70分)1、如圖,在中,,點D在線段BC上運動(D不與B、C重合),連接AD,作,DE交線段AC于E.(1)點D從B向C運動時,逐漸變__________(填“大”或“小”),但與的度數(shù)和始終是__________度.(2)當DC的長度是多少時,,并說明理由.2、已知:如圖,.求證:.分析:如圖,欲證,只要證______.證明:,(已知)又,(
)__________.(
).(__________,____________)3、(1)如圖(a),BD平分,CD平分.試確定和的數(shù)量關系.(2)如圖(b),BE平分,CE平分外角.試確定和的數(shù)量關系.(3)如圖(c),BF平分外角,CF平分外角.試確定和的數(shù)量關系.4、如圖,,.(1)試說明;(2)若,且,求的度數(shù).5、如圖,已知∠A=50°,∠D=40°.(1)求∠1度數(shù);(2)求∠A+∠B+∠C+∠D+∠E的度數(shù).6、如圖,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于點E.P是邊BC上的動點(不與B,C重合),連結(jié)AP,將△APC沿AP翻折得△APD,連結(jié)DC,記∠BCD=α.(1)如圖,當P與E重合時,求α的度數(shù).(2)當P與E不重合時,記∠BAD=β,探究α與β的數(shù)量關系.7、如圖,已知直線AB∥DF,∠D+∠B=180°.(1)試說明DE∥BC;(2)若∠AMD=75°,求∠AGC的度數(shù).-參考答案-一、單選題1、C【解析】【分析】根據(jù)平行線的判定定理求解,即可求得答案.【詳解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的條件是①③④.故選:C.【考點】本題考查平行線的判定定理:1.同旁內(nèi)角互補,兩直線平行;2.同位角相等,兩直線平行;3.內(nèi)錯角相等,兩直線平行.2、C【解析】【分析】根據(jù)平行線的判定方法,對各選項分析判斷后利用排除法求解.【詳解】解:①∵∠1=∠4,∴a∥b(內(nèi)錯角相等,兩直線平行);②∵∠3=∠5,∴a∥b(同位角相等,兩直線平行),③∵∠2+∠5=180°,∴a∥b(同旁內(nèi)角互補,兩直線平行);④∠2和∠4不是同旁內(nèi)角,所以∠2+∠4=180°不能判定直線a∥b.∴能判斷直線a∥b的有①②③,共3個.故選C.【考點】本題考查了平行線的判定,只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補,才能推出兩被截直線平行,解題時要認準各角的位置關系.3、C【解析】【分析】首先在△ADC中有內(nèi)角和為180°,即∠A+∠C+∠ADC=180°,在△AEB中有內(nèi)角和為180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【詳解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故選C.【考點】本題主要考查三角形內(nèi)角和定理的應用,利用了三角形內(nèi)角和為180度,此題難度不大.4、C【解析】【分析】利用鄰補角的概念、等量代換及平行線的判定求解可得.【詳解】證明:延長交于點,則.又,得.故(內(nèi)錯角相等,兩直線平行).所以※代表,◎代表,▲代表,代表內(nèi)錯角,故選:.【考點】本題主要考查平行線的判定,解題的關鍵是掌握鄰補角的概念、等量代換及平行線的判定.5、B【解析】【分析】由三角形的內(nèi)角和,得,由鄰補角的性質(zhì)得,根據(jù)折疊的性質(zhì)得,即,所以,.【詳解】解:∵,∴,∴,由折疊的性質(zhì)可得:,∴,∵,∴,即.故選B.【考點】本題考查了三角形的內(nèi)角和定理、鄰補角的性質(zhì)、折疊的性質(zhì),熟悉掌握三角形的內(nèi)角和為,互為鄰補角的兩個角之和為以及折疊的性質(zhì)是本題的解題關鍵.6、D【解析】【分析】根據(jù)鄰補角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關鍵.7、C【解析】【分析】根據(jù)平行線的判定定理進行逐一分析解答即可.【詳解】解:A、正確,符合“內(nèi)錯角相等,兩條直線平行”的判定定理;B、正確,符合“同位角相等,兩條直線平行”的判定定理;C、錯誤,若∠3=∠4,則AD∥BE;D、正確,符合“同旁內(nèi)角互補,兩條直線平行”的判定定理;故選:C.【考點】本題考查的是平行線的判定定理,比較簡單.8、B【解析】【分析】先根據(jù)直角三角板的性質(zhì)得出∠ACD的度數(shù),再由三角形內(nèi)角和定理即可得出結(jié)論.【詳解】解:如圖所示,由一副三角板的性質(zhì)可知:∠ECD=60°,∠BCA=45°,∠D=90°,∴∠ACD=∠ECD-∠BCA=60°-45°=15°,∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故選:B.【考點】本題考查的是三角形內(nèi)角和定理,熟知三角形內(nèi)角和是180°是解答此題的關鍵.二、填空題1、110【解析】【分析】根據(jù)CE,AP分別平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根據(jù)三角形內(nèi)角和定理,求出∠ADC即可.【詳解】解:∵CE,AP分別平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案為:110.【考點】本題考查了角平分線的性質(zhì)和三角形內(nèi)角和定理,熟練掌握了角平分線的性質(zhì)是解題的關鍵.2、
減小
15【解析】【分析】延長EF到H與CD交于H,先利用對頂角的性質(zhì)和三角形內(nèi)角和定理求出DCE=60°,然后根據(jù)三角形外角的性質(zhì)得到∠DHE=∠E+∠DCE=100°,∠DFE=∠D+∠DHF,由此求解即可.【詳解】解:如圖,延長EF到H與CD交于H,∵∠DCE=∠ACB=180°-∠A-∠B,∠A=70°,∠B=50°,∴∠DCE=60°,∴∠DHE=∠E+∠DCE=100°,∵∠DFE=∠D+∠DHF,∴∠D=∠DFE-∠DHF=120°-100°=20°,∴∠D從35°減小到20°,減小了15°,故答案為:減小,15.【考點】本題主要考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),對頂角的性質(zhì),解題的關鍵在于能夠熟練掌握相關知識進行求解.3、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質(zhì)進行計算分析即可;③根據(jù)∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長AC與E,∵點O是△ABC的三條角平分線的交點,BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點】本題主要考查的是三角形與角平分線的綜合運用,熟練掌握角平分線的性質(zhì)是解題的關鍵.4、180°【解析】【分析】由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,得∠4=∠A+∠2,∠2=∠D+∠C,進而利用三角形的內(nèi)角和定理求解.【詳解】解:如圖可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∵∠B+∠E+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故答案為:180°.【考點】本題考查三角形外角的性質(zhì)及三角形的內(nèi)角和定理,解答的關鍵是溝通外角和內(nèi)角的關系.5、15°##15度【解析】【分析】先由BD、CD分別平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,則根據(jù)平角定理得到∠MBC+∠NCB=300°;再由BE、CE分別平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,兩式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根據(jù)三角形內(nèi)角和定理可計算出∠E=30°;再由BF、CF分別平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根據(jù)三角形外角性質(zhì)得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代換得到∠2=∠5+∠F,2∠2=2∠5+∠E,再進行等量代換可得到∠F=∠E.【詳解】解:如圖:∵BD、CD分別平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分別平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分別平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案為:15°.【考點】本題考查了三角形內(nèi)角和定理、角平分線、三角形外角性質(zhì),解題的關鍵是掌握三角形內(nèi)角和是180°.6、120【解析】【分析】先過點B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,繼而證得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【詳解】解:如圖,過點B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案為:120.【考點】此題考查了平行線的性質(zhì),解題的關鍵是注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應用.7、126°【解析】【分析】利用平行線的性質(zhì)求出∠DEN=27°,再利用翻折不變性得到∠AED=∠DEN=27°,再根據(jù)平角的性質(zhì)即可解決問題.【詳解】解:∵DE∥BC,∴∠DEN=∠A′NM=27°,由翻折不變性可知:∠AED=∠DEN=27°,∴∠NEC=180°﹣2×27°=126°,故答案為126°.【考點】本題考查翻折變換,平行線的性質(zhì)等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.三、解答題1、(1)??;140(2)當DC=2時,△ABD≌△DCE,理由見解析【解析】【分析】(1)利用三角形的內(nèi)角和即可得出結(jié)論;(2)當DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(1)在△ABD中,∠B+∠BAD+∠ADB=180°,設∠BAD=x°,∠BDA=y°,∴40°+x+y=180°,∴y=140-x(0<x<100),當點D從點B向C運動時,x增大,∴y減小,+=180°-故答案為:小,140;(2)當DC=2時,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);【考點】此題主要考查學生對等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形外角的性質(zhì)等知識點的理解和掌握,三角形的內(nèi)角和公式,解本題的關鍵是分類討論.2、;對頂角相等;;等量代換;同位角相等,兩直線平行.【解析】【分析】根據(jù)等量代換和同位角相等,兩直線平行即可得出結(jié)果.【詳解】分析:如圖,欲證,只要證.證明:,(已知)又,(對頂角相等).(等量代換).(同位角相等,兩直線平行)【考點】本題主要考查平行線的判定,屬于基礎題,掌握平行線的判定定理是解題的關鍵.3、(1);(2);(3)【解析】【分析】(1)根據(jù)三角形的內(nèi)角和定理以及角平分線的定義即可確定和的數(shù)量關系;(2)根據(jù)三角形的外角性質(zhì)以及角平分線的定義可得,進而可得和的數(shù)量關系;(3)根據(jù)三角形的內(nèi)角和定理可得,,結(jié)合角平分線的定義,根據(jù)即可確定和的數(shù)量關系.【詳解】(1)在中,.在中,.∵,,∴;(2)在中,.在中,.∵,,∴.(3)在中,.在中,.∵,.,,∴.【考點】本題考查了三角形的內(nèi)角和定理,三角形的外角性質(zhì),角平分線的定義,熟練掌握以上知識是解題的關鍵.4、(1)見解析(2)35°【解析】【分析】(1)根據(jù),可得BM∥CN,從而得到∠CBM=∠BCN,再由,可得∠ABC=∠BCD,即可求證;(2)根據(jù)對頂角相等可得∠ABD=110°,再由三角形的內(nèi)角和定理可得∠BAD=35°,然后根據(jù)AB∥CD,即可求解.(1)解:∵,∴BM∥CN,∴∠CBM=∠BCN,∵,∴∠3+∠CBM=∠4+∠BCN,即∠ABC=∠BCD,∴AB∥CD;(2)解:∵∠ABD=∠EBF,,∴∠ABD=110°,∴∠BAD+∠BDA=70°,∵,∴∠BAD=35°,∵AB∥CD,∴∠ADC=∠BAD=35°.【考點】本題主要考查了平行線的性質(zhì)和判定,對頂角的性質(zhì),三角形的內(nèi)角和定理,熟練掌握平行線的性質(zhì)和判定,對頂角的性質(zhì),三角形的內(nèi)角和定理是解題的關鍵.5、(1)(2)【解析】【分析】(1)根據(jù)三角形的外角的性質(zhì)即可得到結(jié)論;(2)設∠1的同旁內(nèi)角為∠2,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠1=∠A+∠C,∠2=∠B+∠D,然后利用三角形的內(nèi)角和定理列式計算即可得解.(1)∠1=∠A+∠D=90°;,(2)設∠1的同旁內(nèi)角為∠2,如圖,∵∠1=∠A+∠D,∠2=∠B+∠E,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【考點】本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),三角形的內(nèi)角和定理,熟記性質(zhì)并準確識圖是解題的關鍵.6、(1)25°(2)①當點P在線段BE上時,2α-β=50°;②當點P在線段CE上時,2α+β=50°【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026云南玉溪易門康達醫(yī)院招募見習人員20人備考題庫及1套參考答案詳解
- 2026內(nèi)蒙古自治區(qū)考試錄用特殊職位公務員備考題庫(16人)完整答案詳解
- 2026山東事業(yè)單位統(tǒng)考煙臺萊州市招聘63人備考題庫及答案詳解(考點梳理)
- 2026南平順昌縣農(nóng)業(yè)農(nóng)村局招聘動物檢疫協(xié)檢人員1人備考題庫有答案詳解
- 2026山東事業(yè)單位統(tǒng)考威海文登區(qū)招聘初級綜合類崗位13人備考題庫完整參考答案詳解
- 2026年福建泉州紡織服裝職業(yè)學院招聘備考題庫及參考答案詳解
- 2026云南昭通市文化館招聘城鎮(zhèn)公益性崗位人員3人備考題庫及完整答案詳解
- 2026江蘇南京江北新區(qū)泰山小學后勤人員招聘1人備考題庫及完整答案詳解
- 2026四川成都市簡陽市智慧蓉城運行中心招聘編外人員2人備考題庫(含答案詳解)
- 2026年云南公務員考試備考題庫(8925人)及一套完整答案詳解
- 話語體系構(gòu)建的文化自信與敘事創(chuàng)新課題申報書
- 2026年春蘇教版新教材小學科學二年級下冊(全冊)教學設計(附教材目錄P97)
- 2026年基因測序技術臨床應用報告及未來五至十年生物科技報告
- 服裝銷售年底總結(jié)
- 文物安全保護責任書范本
- 廣東省惠州市某中學2025-2026學年七年級歷史上學期期中考試題(含答案)
- 2025公文寫作考試真題及答案
- 停電施工方案優(yōu)化(3篇)
- DB64∕T 1279-2025 鹽堿地綜合改良技術規(guī)程
- 2025年度耳鼻喉科工作總結(jié)及2026年工作計劃
- 2024年執(zhí)業(yè)藥師《藥學專業(yè)知識(一)》試題及答案
評論
0/150
提交評論