版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025威海中考數(shù)學(xué)試卷及答案
一、單項(xiàng)選擇題1.下列實(shí)數(shù)中,無理數(shù)是()A.0B.-2C.$\sqrt{3}$D.$\frac{22}{7}$答案:C2.一元二次方程$x^{2}-4x+3=0$的根為()A.$x=1$B.$x=3$C.$x_{1}=1,x_{2}=3$D.$x_{1}=-1,x_{2}=-3$答案:C3.函數(shù)$y=\frac{1}{\sqrt{x-2}}$中,自變量$x$的取值范圍是()A.$x\gt2$B.$x\geq2$C.$x\lt2$D.$x\neq2$答案:A4.若點(diǎn)$A(-2,y_{1})$,$B(1,y_{2})$,$C(2,y_{3})$都在反比例函數(shù)$y=\frac{k}{x}(k\lt0)$的圖象上,則$y_{1}$,$y_{2}$,$y_{3}$的大小關(guān)系是()A.$y_{1}\gty_{2}\gty_{3}$B.$y_{2}\gty_{1}\gty_{3}$C.$y_{1}\gty_{3}\gty_{2}$D.$y_{3}\gty_{2}\gty_{1}$答案:C5.一個(gè)圓錐的底面半徑為$3$,高為$4$,則這個(gè)圓錐的側(cè)面積是()A.$15\pi$B.$12\pi$C.$24\pi$D.$30\pi$答案:A6.用配方法解一元二次方程$x^{2}-6x+4=0$時(shí),配方正確的是()A.$(x-3)^{2}=13$B.$(x-3)^{2}=5$C.$(x-6)^{2}=13$D.$(x-6)^{2}=5$答案:B7.已知$\odotO$的半徑為$5$,圓心$O$到直線$l$的距離為$3$,則直線$l$與$\odotO$的位置關(guān)系是()A.相交B.相切C.相離D.無法確定答案:A8.化簡$\frac{a^{2}}{a-1}-\frac{1}{a-1}$的結(jié)果是()A.$a+1$B.$a-1$C.$a^{2}-1$D.$1$答案:A9.若關(guān)于$x$的一元一次不等式組$\begin{cases}x-a\gt0\\1-x\gtx-1\end{cases}$無解,則$a$的取值范圍是()A.$a\geq1$B.$a\gt1$C.$a\leq-1$D.$a\lt-1$答案:A10.如圖,在矩形$ABCD$中,$AB=3$,$BC=4$,點(diǎn)$P$從點(diǎn)$A$出發(fā),沿$A→B→C$的方向在$AB$和$BC$上運(yùn)動,運(yùn)動到點(diǎn)$C$停止,設(shè)點(diǎn)$P$運(yùn)動的路程為$x$,$\triangleADP$的面積為$y$,則$y$與$x$之間的函數(shù)圖象大致是()答案:B二、多項(xiàng)選擇題1.下列運(yùn)算正確的是()A.$a^{2}\cdota^{3}=a^{5}$B.$(a^{2})^{3}=a^{6}$C.$a^{6}\diva^{2}=a^{3}$D.$(ab)^{3}=a^{3}b^{3}$答案:ABD2.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.矩形B.菱形C.正方形D.等腰三角形答案:ABC3.數(shù)據(jù)$2$,$3$,$4$,$4$,$5$,$5$,$5$的眾數(shù)和中位數(shù)分別是()A.$5$B.$4$C.$4.5$D.$3$答案:AB4.若二次函數(shù)$y=ax^{2}+bx+c(a\neq0)$的圖象如圖所示,則下列結(jié)論正確的是()A.$a\lt0$B.$b\lt0$C.$c\gt0$D.$b^{2}-4ac\gt0$答案:ACD5.下列命題中,是真命題的有()A.同位角相等B.三角形的內(nèi)角和等于$180^{\circ}$C.平行四邊形的對邊相等D.對角線互相垂直的四邊形是菱形答案:BC6.已知點(diǎn)$A(x_{1},y_{1})$,$B(x_{2},y_{2})$在一次函數(shù)$y=kx+b(k\neq0)$的圖象上,且$x_{1}\ltx_{2}$,$y_{1}\gty_{2}$,則下列結(jié)論正確的是()A.$k\lt0$B.$k\gt0$C.當(dāng)$x_{1}\ltx_{2}$時(shí),$y$隨$x$的增大而增大D.當(dāng)$x_{1}\ltx_{2}$時(shí),$y$隨$x$的增大而減小答案:AD7.一個(gè)不透明的袋子中裝有$3$個(gè)紅球和$2$個(gè)綠球,這些球除顏色外都相同,從袋子中隨機(jī)摸出一個(gè)球,這個(gè)球是紅球的概率為()A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$答案:A8.若分式方程$\frac{x}{x-3}-2=\frac{m}{x-3}$有增根,則$m$的值為()A.$3$B.$0$C.$-3$D.以上都不對答案:A9.已知正多邊形的一個(gè)外角為$36^{\circ}$,則該正多邊形的邊數(shù)為()A.$10$B.$8$C.$6$D.$5$答案:A10.如圖,在$\triangleABC$中,$DE\parallelBC$,$AD=2$,$DB=3$,則下列結(jié)論正確的是()A.$\frac{AE}{AC}=\frac{2}{3}$B.$\frac{DE}{BC}=\frac{2}{3}$C.$\frac{\triangleADE的周長}{\triangleABC的周長}=\frac{2}{5}$D.$\frac{\triangleADE的面積}{\triangleABC的面積}=\frac{4}{25}$答案:CD三、判斷題1.所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示。(√)2.若$a\gtb$,則$ac^{2}\gtbc^{2}$。(×)3.三角形的外角和是$360^{\circ}$。(√)4.對角線相等的四邊形是矩形。(×)5.二次函數(shù)$y=ax^{2}+bx+c$的對稱軸是直線$x=-\frac{2a}$。(√)6.相似三角形的面積比等于相似比。(×)7.一組數(shù)據(jù)的方差越大,這組數(shù)據(jù)的波動越大。(√)8.半徑為$R$,圓心角為$n^{\circ}$的扇形面積公式為$S=\frac{n\piR^{2}}{360}$。(√)9.若點(diǎn)$P(x,y)$在第二象限,則$x\lt0$,$y\gt0$。(√)10.方程$x^{2}+x+1=0$有兩個(gè)不相等的實(shí)數(shù)根。(×)四、簡答題1.計(jì)算:$\sqrt{12}-3\tan30^{\circ}+(π-4)^{0}-(\frac{1}{2})^{-1}$答案:先分別計(jì)算各項(xiàng),$\sqrt{12}=\sqrt{4\times3}=2\sqrt{3}$,$\tan30^{\circ}=\frac{\sqrt{3}}{3}$,所以$3\tan30^{\circ}=3\times\frac{\sqrt{3}}{3}=\sqrt{3}$,任何非零數(shù)的$0$次方都是$1$,則$(π-4)^{0}=1$,一個(gè)數(shù)的負(fù)指數(shù)冪等于其正指數(shù)冪的倒數(shù),$(\frac{1}{2})^{-1}=2$。原式$=2\sqrt{3}-\sqrt{3}+1-2=\sqrt{3}-1$。2.解不等式組:$\begin{cases}2x+1\gt-1\\3-x\geq1\end{cases}$答案:解不等式$2x+1\gt-1$,移項(xiàng)得$2x\gt-1-1$,即$2x\gt-2$,兩邊同時(shí)除以$2$,得$x\gt-1$。解不等式$3-x\geq1$,移項(xiàng)得$-x\geq1-3$,即$-x\geq-2$,兩邊同時(shí)除以$-1$,不等號變向,得$x\leq2$。所以不等式組的解集為$-1\ltx\leq2$。3.已知關(guān)于$x$的一元二次方程$x^{2}-(2k+1)x+k^{2}+k=0$。(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(2)若$\triangleABC$的兩邊$AB$,$AC$的長是這個(gè)方程的兩個(gè)實(shí)數(shù)根,第三邊$BC$的長為$5$,當(dāng)$\triangleABC$是等腰三角形時(shí),求$k$的值。答案:(1)計(jì)算判別式$\Delta=[-(2k+1)]^{2}-4(k^{2}+k)=4k^{2}+4k+1-4k^{2}-4k=1\gt0$,所以方程有兩個(gè)不相等的實(shí)數(shù)根。(2)解方程得$x_{1}=k$,$x_{2}=k+1$。當(dāng)$AB=AC$時(shí),$k=k+1$,無解;當(dāng)$AB=BC=5$時(shí),$k=5$;當(dāng)$AC=BC=5$時(shí),$k+1=5$,解得$k=4$。所以$k$的值為$4$或$5$。4.如圖,在平行四邊形$ABCD$中,$E$是$BC$的中點(diǎn),連接$AE$并延長交$DC$的延長線于點(diǎn)$F$。(1)求證:$AB=CF$;(2)連接$DE$,若$AD=2AB$,求證:$DE\perpAF$。答案:(1)因?yàn)樗倪呅?ABCD$是平行四邊形,所以$AB\parallelDF$,則$\angleBAE=\angleCFE$,$\angleABE=\angleFCE$,又因?yàn)?E$是$BC$中點(diǎn),即$BE=CE$,所以$\triangleABE\cong\triangleFCE(AAS)$,所以$AB=CF$。(2)由(1)知$AB=CF$,又因?yàn)?AB=CD$,$AD=2AB$,所以$AD=DF$,因?yàn)?E$是$AF$中點(diǎn),根據(jù)等腰三角形三線合一,所以$DE\perpAF$。五、討論題1.在平面直角坐標(biāo)系中,二次函數(shù)$y=x^{2}+bx+c$的圖象經(jīng)過點(diǎn)$A(0,-3)$,$B(1,0)$。(1)求這個(gè)二次函數(shù)的解析式;(2)在平面直角坐標(biāo)系中,畫出該二次函數(shù)的圖象,并結(jié)合圖象討論當(dāng)$y\gt0$時(shí),$x$的取值范圍。答案:(1)把$A(0,-3)$,$B(1,0)$代入$y=x^{2}+bx+c$,得$\begin{cases}c=-3\\1+b+c=0\end{cases}$,將$c=-3$代入$1+b+c=0$,得$1+b-3=0$,解得$b=2$,所以二次函數(shù)解析式為$y=x^{2}+2x-3$。(2)將$y=x^{2}+2x-3$化為頂點(diǎn)式$y=(x+1)^{2}-4$,對稱軸為$x=-1$,頂點(diǎn)坐標(biāo)為$(-1,-4)$,與$x$軸交點(diǎn)為$B(1,0)$和$(-3,0)$,與$y$軸交點(diǎn)為$A(0,-3)$。畫出圖象后,可看出當(dāng)$y\gt0$時(shí),$x\lt-3$或$x\gt1$。2.如圖,在$\triangleABC$中,$\angleC=90^{\circ}$,$AC=6$,$BC=8$。點(diǎn)$P$從點(diǎn)$A$出發(fā),沿$AC$邊向點(diǎn)$C$以$1$個(gè)單位長度/秒的速度勻速運(yùn)動;同時(shí)點(diǎn)$Q$從點(diǎn)$C$出發(fā),沿$CB$邊向點(diǎn)$B$以$2$個(gè)單位長度/秒的速度勻速運(yùn)動,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動。設(shè)運(yùn)動時(shí)間為$t$秒($0\ltt\leq4$)。(1)當(dāng)$t$為何值時(shí),$\trianglePCQ$的面積等于$8$?(2)在運(yùn)動過程中,是否存在某一時(shí)刻$t$,使得$\trianglePCQ$與$\triangleABC$相似?若存在,求出$t$的值;若不存在,請說明理由。答案:(1)已知$AP=t$,則$PC=6-t$,$CQ=2t$,根據(jù)三角形面積公式$S_{\trianglePCQ}=\frac{1}{2}PC\cdotCQ$,即$\frac{1}{2}(6-t)\times2t=8$,化簡得$t^{2}-6t+8=0$,分解因式得$(t-2)(t-4)=0$,解得$t=2$或$t=4$。(2)若$\trianglePCQ\sim\triangleABC$,則有$\frac{PC}{AC}=\frac{CQ}{BC}$或$\frac{PC}{BC}=\frac{CQ}{AC}$。當(dāng)$\frac{PC}{AC}=\frac{CQ}{BC}$時(shí),$\frac{6-t}{6}=\frac{2t}{8}$,解得$t=\frac{12}{7}$;當(dāng)$\frac{PC}{BC}=\frac{CQ}{AC}$時(shí),$\frac{6-t}{8}=\frac{2t}{6}$,解得$t=\frac{18}{11}$。所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年咸陽市高新一中教師招聘備考題庫(含答案詳解)
- 2025科新動力電池系統(tǒng)(湖北)有限公司招聘備考題庫完整答案詳解
- 2025昆明市第十二中學(xué)教育集團(tuán)聘用制教師招聘備考題庫(若干)及1套完整答案詳解
- 2025廣東佛山市禪城區(qū)人民醫(yī)院康復(fù)醫(yī)院自主招聘第三批合同制工作人員6人備考題庫及答案詳解(新)
- 企業(yè)安全生產(chǎn)管理與實(shí)施指南(標(biāo)準(zhǔn)版)
- 2026吉林長春汽車經(jīng)濟(jì)技術(shù)開發(fā)區(qū)招聘編制外輔助崗位人員69人備考題庫及完整答案詳解一套
- 物流配送操作流程(標(biāo)準(zhǔn)版)
- 2026中華人民共和國衢州海關(guān)編外人員招聘1人備考題庫(二)及答案詳解參考
- 酒店客房服務(wù)流程指南(標(biāo)準(zhǔn)版)
- 電子元器件測試與驗(yàn)收流程(標(biāo)準(zhǔn)版)
- 電子技術(shù)基礎(chǔ)(模擬電子電路)
- 教科版九年級物理上冊期末測試卷(1套)
- 內(nèi)蒙古自治區(qū)通遼市霍林郭勒市2024屆中考語文最后一模試卷含解析
- 復(fù)方蒲公英注射液的藥代動力學(xué)研究
- 單純皰疹病毒感染教學(xué)演示課件
- 廣東省中山市2023-2024學(xué)年四年級上學(xué)期期末數(shù)學(xué)試卷
- 變配電室送電施工方案
- 地質(zhì)勘查現(xiàn)場安全風(fēng)險(xiǎn)管控清單
- 松下panasonic-經(jīng)銷商傳感器培訓(xùn)
- 中醫(yī)舌、脈象的辨識與臨床應(yīng)用課件
- 建設(shè)工程項(xiàng)目施工風(fēng)險(xiǎn)管理課件
評論
0/150
提交評論