人教版中學七7年級下冊數(shù)學期末解答題測試試卷(含答案)_第1頁
人教版中學七7年級下冊數(shù)學期末解答題測試試卷(含答案)_第2頁
人教版中學七7年級下冊數(shù)學期末解答題測試試卷(含答案)_第3頁
人教版中學七7年級下冊數(shù)學期末解答題測試試卷(含答案)_第4頁
人教版中學七7年級下冊數(shù)學期末解答題測試試卷(含答案)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版中學七7年級下冊數(shù)學期末解答題測試試卷(含答案)一、解答題1.如圖,用兩個面積為的小正方形紙片剪拼成一個大的正方形.(1)大正方形的邊長是________;(2)請你探究是否能將此大正方形紙片沿著邊的方向裁出一個面積為的長方形紙片,使它的長寬之比為,若能,求出這個長方形紙片的長和寬,若不能,請說明理由.2.(1)如圖,分別把兩個邊長為的小正方形沿一條對角線裁成個小三角形拼成一個大正方形,則大正方形的邊長為_______;(2)若一個圓的面積與一個正方形的面積都是,設圓的周長為,正方形的周長為,則_____(填“”或“”或“”號);(3)如圖,若正方形的面積為,李明同學想沿這塊正方形邊的方向裁出一塊面積為的長方形紙片,使它的長和寬之比為,他能裁出嗎?請說明理由?3.有一塊面積為100cm2的正方形紙片.(1)該正方形紙片的邊長為cm(直接寫出結果);(2)小麗想沿著該紙片邊的方向裁剪出一塊面積為90cm2的長方形紙片,使它的長寬之比為4:3.小麗能用這塊紙片裁剪出符合要求的紙片嗎?4.如圖用兩個邊長為cm的小正方形紙片拼成一個大的正方形紙片,沿著大正方形紙片的邊的方向截出一個長方形紙片,能否使截得的長方形紙片長寬之比為,且面積為cm2?請說明理由.5.數(shù)學活動課上,小新和小葵各自拿著不同的長方形紙片在做數(shù)學問題探究.(1)小新經(jīng)過測量和計算得到長方形紙片的長寬之比為3:2,面積為30,請求出該長方形紙片的長和寬;(2)小葵在長方形內畫出邊長為a,b的兩個正方形(如圖所示),其中小正方形的一條邊在大正方形的一條邊上,她經(jīng)過測量和計算得到長方形紙片的周長為50,陰影部分兩個長方形的周長之和為30,由此她判斷大正方形的面積為100,間小葵的判斷正確嗎?請說明理由.二、解答題6.已知,AB∥DE,點C在AB上方,連接BC、CD.(1)如圖1,求證:∠BCD+∠CDE=∠ABC;(2)如圖2,過點C作CF⊥BC交ED的延長線于點F,探究∠ABC和∠F之間的數(shù)量關系;(3)如圖3,在(2)的條件下,∠CFD的平分線交CD于點G,連接GB并延長至點H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.7.已知,AB∥CD,點E為射線FG上一點.(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當點E在FG延長線上時,此時CD與AE交于點H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關系,請說明你的結論;(3)如圖3,當點E在FG延長線上時,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).8.如圖1,點在直線上,點在直線上,點在,之間,且滿足.(1)證明:;(2)如圖2,若,,點在線段上,連接,且,試判斷與的數(shù)量關系,并說明理由;(3)如圖3,若(為大于等于的整數(shù)),點在線段上,連接,若,則______.9.已知:如圖(1)直線AB、CD被直線MN所截,∠1=∠2.(1)求證:AB//CD;(2)如圖(2),點E在AB,CD之間的直線MN上,P、Q分別在直線AB、CD上,連接PE、EQ,PF平分∠BPE,QF平分∠EQD,則∠PEQ和∠PFQ之間有什么數(shù)量關系,請直接寫出你的結論;(3)如圖(3),在(2)的條件下,過P點作PH//EQ交CD于點H,連接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度數(shù).10.已知直線,點P為直線、所確定的平面內的一點.(1)如圖1,直接寫出、、之間的數(shù)量關系;(2)如圖2,寫出、、之間的數(shù)量關系,并證明;(3)如圖3,點E在射線上,過點E作,作,點G在直線上,作的平分線交于點H,若,,求的度數(shù).三、解答題11.[感知]如圖①,,求的度數(shù).小樂想到了以下方法,請幫忙完成推理過程.解:(1)如圖①,過點P作.∴(_____________),∴,∴________(平行于同一條直線的兩直線平行),∴_____________(兩直線平行,同旁內角互補),∴,∴,∴,即.[探究]如圖②,,求的度數(shù);[應用](1)如圖③,在[探究]的條件下,的平分線和的平分線交于點G,則的度數(shù)是_________o.(2)已知直線,點A,B在直線a上,點C,D在直線b上(點C在點D的左側),連接,若平分平分,且所在的直線交于點E.設,請直接寫出的度數(shù)(用含的式子表示).12.如圖1,E點在上,..(1)求證:(2)如圖2,平分,與的平分線交于H點,若比大,求的度數(shù).(3)保持(2)中所求的的度數(shù)不變,如圖3,平分平分,作,則的度數(shù)是否改變?若不變,請直接寫出答案;若改變,請說明理由.13.已知,將一副三角板中的兩塊直角三角板如圖1放置,,,,.(1)若三角板如圖1擺放時,則______,______.(2)現(xiàn)固定的位置不變,將沿方向平移至點E正好落在上,如圖2所示,與交于點G,作和的角平分線交于點H,求的度數(shù);(3)現(xiàn)固定,將繞點A順時針旋轉至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出的度數(shù).14.課題學習:平行線的“等角轉化”功能.閱讀理解:如圖1,已知點A是BC外一點,連接AB,AC,求∠BAC+∠B+∠C的度數(shù).(1)閱讀并補充下面推理過程解:過點A作ED∥BC,∴∠B=∠EAB,∠C=又∵∠EAB+∠BAC+∠DAC=180°∴∠B+∠BAC+∠C=180°解題反思:從上面推理過程中,我們發(fā)現(xiàn)平行線具有“等角轉化”的功能,將∠BAC,∠B,∠C“湊”在一起,得出角之間的關系,使問題得以解決.方法運用:(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù).(提示:過點C作CF∥AB)深化拓展:(3)如圖3,已知AB∥CD,點C在點D的右側,∠ADC=70°,點B在點A的左側,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直線交于點E,點E在AB與CD兩條平行線之間,求∠BED的度數(shù).15.綜合與探究綜合與實踐課上,同學們以“一個含角的直角三角尺和兩條平行線”為背景開展數(shù)學活動,如圖,已知兩直線,,且,三角形是直角三角形,,,操作發(fā)現(xiàn):(1)如圖1.,求的度數(shù);(2)如圖2.創(chuàng)新小組的同學把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.實踐探究:(3)填密小組在創(chuàng)新小組發(fā)現(xiàn)的結論的基礎上,將圖2中的圖形繼續(xù)變化得到圖3,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關系,請寫出與的數(shù)量關系并說明理由.四、解答題16.小明在學習過程中,對教材中的一個有趣問題做如下探究:(習題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點.求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點,其反向延長線與邊的延長線交于點,則與還相等嗎?說明理由;(探究延伸)如圖3,在中,上存在一點,使得,的平分線交于點.的外角的平分線所在直線與的延長線交于點.直接寫出與的數(shù)量關系.17.如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點E,求∠CEN的度數(shù);(2)將圖①中的三角板OMN繞點O按逆時針方向旋轉,使∠BON=30°,如圖③,MN與CD相交于點E,求∠CEN的度數(shù);(3)將圖①中的三角板OMN繞點O按每秒30°的速度按逆時針方向旋轉一周,在旋轉的過程中,在第____________秒時,直線MN恰好與直線CD垂直.(直接寫出結果)18.如圖所示,已知射線.點E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個比值;(3)在平行移動AB的過程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請說明理由.19.如圖①,平分,⊥,∠B=450,∠C=730.(1)求的度數(shù);(2)如圖②,若把“⊥”變成“點F在DA的延長線上,”,其它條件不變,求的度數(shù);(3)如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.20.模型與應用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點O,若∠M1OMn=m°.在(2)的基礎上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)【參考答案】一、解答題1.(1)4;(2)不能,理由見解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長即可;(2)先設未知數(shù)根據(jù)面積=14(cm2)列方程,求出長方形的邊長,將長方形的長與正方形邊長比較大小再解析:(1)4;(2)不能,理由見解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長即可;(2)先設未知數(shù)根據(jù)面積=14(cm2)列方程,求出長方形的邊長,將長方形的長與正方形邊長比較大小再判斷即可.【詳解】解:(1)兩個正方形面積之和為:2×8=16(cm2),∴拼成的大正方形的面積=16(cm2),∴大正方形的邊長是4cm;故答案為:4;(2)設長方形紙片的長為2xcm,寬為xcm,則2x?x=14,解得:,2x=2>4,∴不存在長寬之比為且面積為的長方形紙片.【點睛】本題考查了算術平方根,能夠根據(jù)題意列出算式是解此題的關鍵.2.(1);(2);(3)不能裁剪出,詳見解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長;(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長,進而可求得圓和正方形解析:(1);(2);(3)不能裁剪出,詳見解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長;(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長,進而可求得圓和正方形的周長,利用作商法比較這兩數(shù)大小即可;(3)利用方程思想求出長方形的長邊,與正方形邊長比較大小即可;【詳解】解:(1)∵小正方形的邊長為1cm,∴小正方形的面積為1cm2,∴兩個小正方形的面積之和為2cm2,即所拼成的大正方形的面積為2cm2,∴大正方形的邊長為cm,(2)∵,∴,∴,設正方形的邊長為a∵,∴,∴,∴故答案為:<;(3)解:不能裁剪出,理由如下:∵長方形紙片的長和寬之比為,∴設長方形紙片的長為,寬為,則,整理得:,∴,∵450>400,∴,∴,∴長方形紙片的長大于正方形的邊長,∴不能裁出這樣的長方形紙片.【點睛】本題通過圓和正方形的面積考查了對算術平方根的應用,主要是對學生無理數(shù)運算及比較大小進行了考查.3.(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據(jù)算術平方根的定義直接得出;(2)直接利用算術平方根的定義長方形紙片的長與寬,進而得出答案.【詳解】解:(1)根據(jù)算解析:(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據(jù)算術平方根的定義直接得出;(2)直接利用算術平方根的定義長方形紙片的長與寬,進而得出答案.【詳解】解:(1)根據(jù)算術平方根定義可得,該正方形紙片的邊長為10cm;故答案為:10;(2)∵長方形紙片的長寬之比為4:3,∴設長方形紙片的長為4xcm,則寬為3xcm,則4x?3x=90,∴12x2=90,∴x2=,解得:x=或x=-(負值不符合題意,舍去),∴長方形紙片的長為2cm,∵5<<6,∴10<2,∴小麗不能用這塊紙片裁出符合要求的紙片.【點睛】本題考查了算術平方根.解題的關鍵是掌握算術平方根的定義:一個正數(shù)的正的平方根叫這個數(shù)的算術平方根;0的算術平方根為0.也考查了估算無理數(shù)的大?。?.不能截得長寬之比為,且面積為cm2的長方形紙片,見解析【分析】根據(jù)拼圖求出大正方形的邊長,再根據(jù)長方形的長、寬之比為3:2,計算長方形的長與寬進行驗證即可.【詳解】解:不能,因為大正方形紙解析:不能截得長寬之比為,且面積為cm2的長方形紙片,見解析【分析】根據(jù)拼圖求出大正方形的邊長,再根據(jù)長方形的長、寬之比為3:2,計算長方形的長與寬進行驗證即可.【詳解】解:不能,因為大正方形紙片的面積為()2+()2=36(cm2),所以大正方形的邊長為6cm,設截出的長方形的長為3bcm,寬為2bcm,則6b2=30,所以b=(取正值),所以3b=3=>,所以不能截得長寬之比為3:2,且面積為30cm2的長方形紙片.【點睛】本題考查了算術平方根,理解算術平方根的意義是正確解答的關鍵.5.(1)長為,寬為;(2)正確,理由見解析【分析】(1)設長為3x,寬為2x,根據(jù)長方形的面積為30列方程,解方程即可;(2)根據(jù)長方形紙片的周長為50,陰影部分兩個長方形的周長之和為30列方程解析:(1)長為,寬為;(2)正確,理由見解析【分析】(1)設長為3x,寬為2x,根據(jù)長方形的面積為30列方程,解方程即可;(2)根據(jù)長方形紙片的周長為50,陰影部分兩個長方形的周長之和為30列方程組,解方程組求出a即可得到大正方形的面積.【詳解】解:(1)設長為3x,寬為2x,則:3x?2x=30,∴x=(負值舍去),∴3x=,2x=,答:這個長方形紙片的長為,寬為;(2)正確.理由如下:根據(jù)題意得:,解得:,∴大正方形的面積為102=100.【點睛】本題考查了算術平方根,二元一次方程組,解二元一次方程組的基本思路是消元,把二元方程轉化為一元方程是解題的關鍵.二、解答題6.(1)證明見解析;(2);(3).【分析】(1)過點作,先根據(jù)平行線的性質可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質可得,由此即可得證;(2)過點作,同(1)的方法,先根據(jù)平行線的性質解析:(1)證明見解析;(2);(3).【分析】(1)過點作,先根據(jù)平行線的性質可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質可得,由此即可得證;(2)過點作,同(1)的方法,先根據(jù)平行線的性質得出,,從而可得,再根據(jù)垂直的定義可得,由此即可得出結論;(3)過點作,延長至點,先根據(jù)平行線的性質可得,,從而可得,再根據(jù)角平分線的定義、結合(2)的結論可得,然后根據(jù)角的和差、對頂角相等可得,由此即可得出答案.【詳解】證明:(1)如圖,過點作,,,,,即,,;(2)如圖,過點作,,,,,即,,,,,;(3)如圖,過點作,延長至點,,,,,平分,平分,,由(2)可知,,,又,.【點睛】本題考查了平行線的性質、對頂角相等、角平分線的定義等知識點,熟練掌握平行線的性質是解題關鍵.7.(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據(jù)平行線的性質得到,,即可求得;(2)過過作,根據(jù)平行線的性質得到,,即;(3)設,則,通過三角形內角和得到,由角平分線解析:(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據(jù)平行線的性質得到,,即可求得;(2)過過作,根據(jù)平行線的性質得到,,即;(3)設,則,通過三角形內角和得到,由角平分線定義及得到,求出的值再通過三角形內角和求.【詳解】解:(1)過作,,,,,,故答案為:;(2).理由如下:過作,,,,,,,;(3),設,則,,,又,,,平分,,,,即,解得,,.【點睛】本題主要考查了平行線的性質和判定,正確做出輔助線是解決問題的關鍵.8.(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)解析:(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)AD∥BC,得到∠DAC=120°,求出∠CAE即可得到結論;(3)作CF∥ST,設∠CBT=β,得到∠CBT=∠BCF=β,分別表示出∠CAN和∠CAE,即可得到比值.【詳解】解:(1)如圖,連接,,,,,(2),理由:作,則如圖,設,則.,,,,.即.(3)作,則如圖,設,則.,,,,,故答案為.【點睛】本題主要考查平行線的性質和判定,解題關鍵是角度的靈活轉換,構建數(shù)量關系式.9.(1)見解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線解析:(1)見解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線的性質即可證明;(3)如圖3中,設∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,想辦法構建方程即可解決問題;【詳解】(1)如圖1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)結論:如圖2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可證:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如圖3中,設∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y(tǒng)+z﹣x,∵PQ平分∠EPH,∴Z=y(tǒng)+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【點睛】本題考查了平行線的判定與性質,角平分線的定義等知識.(2)中能正確作出輔助線是解題的關鍵;(3)中能熟練掌握相關性質,找到角度之間的關系是解題的關鍵.10.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內角互補,即可證得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內角互補,即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點睛】此題考查了平行線的性質以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.三、解答題11.[感知]見解析;[探究]70°;[應用](1)35;(2)或【分析】[感知]過點P作PM∥AB,根據(jù)平行線的性質得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度數(shù),結合∠1可得結果;解析:[感知]見解析;[探究]70°;[應用](1)35;(2)或【分析】[感知]過點P作PM∥AB,根據(jù)平行線的性質得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度數(shù),結合∠1可得結果;[探究]過點P作PM∥AB,根據(jù)AB∥CD,PM∥CD,進而根據(jù)平行線的性質即可求∠EPF的度數(shù);[應用](1)如圖③所示,在[探究]的條件下,根據(jù)∠PEA的平分線和∠PFC的平分線交于點G,可得∠G的度數(shù);(2)畫出圖形,分點A在點B左側和點A在點B右側,兩種情況,分別求解.【詳解】解:[感知]如圖①,過點P作PM∥AB,∴∠1=∠AEP=40°(兩直線平行,內錯角相等)∵AB∥CD,∴PM∥CD(平行于同一條直線的兩直線平行),∴∠2+∠PFD=180°(兩直線平行,同旁內角互補),∴∠PFD=130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF=90°;[探究]如圖②,過點P作PM∥AB,∴∠MPE=∠AEP=50°,∵AB∥CD,∴PM∥CD,∴∠PFC=∠MPF=120°,∴∠EPF=∠MPF-∠MPE=120°-50°=70°;[應用](1)如圖③所示,∵EG是∠PEA的平分線,F(xiàn)G是∠PFC的平分線,∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,過點G作GM∥AB,∴∠MGE=∠AEG=25°(兩直線平行,內錯角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一條直線的兩直線平行),∴∠GFC=∠MGF=60°(兩直線平行,內錯角相等).∴∠G=∠MGF-∠MGE=60°-25°=35°.故答案為:35.(2)當點A在點B左側時,如圖,故點E作EF∥AB,則EF∥CD,∴∠ABE=∠BEF,∠CDE=∠DEF,∵平分平分,,∴∠ABE=∠BEF=,∠CDE=∠DEF=,∴∠BED=∠BEF+∠DEF=;當點A在點B右側時,如圖,故點E作EF∥AB,則EF∥CD,∴∠DEF=∠CDE,∠ABG=∠BEF,∵平分平分,,∴∠DEF=∠CDE=,∠ABG=∠BEF=,∴∠BED=∠DEF-∠BEF=;綜上:∠BED的度數(shù)為或.【點睛】本題考查了平行線的判定與性質、平行公理及推論,角平分線的定義,解決本題的關鍵是熟練運用平行線的性質.12.(1)見解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長交于點,根據(jù),,可得,所以,可得,又,進而可得結論;(2)如圖2,作,,根據(jù),可得,根據(jù)平行線的性質得角之間的關系,再解析:(1)見解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長交于點,根據(jù),,可得,所以,可得,又,進而可得結論;(2)如圖2,作,,根據(jù),可得,根據(jù)平行線的性質得角之間的關系,再根據(jù)比大,列出等式即可求的度數(shù);(3)如圖3,過點作,設直線和直線相交于點,根據(jù)平行線的性質和角平分線定義可求的度數(shù).【詳解】解:(1)證明:如圖1,延長交于點,,,,,,,,;(2)如圖2,作,,,,,,平分,,,,,,,平分,,,,,設,,比大,,解得的度數(shù)為;(3)的度數(shù)不變,理由如下:如圖3,過點作,設直線和直線相交于點,平分,平分,,,,,,,,,由(2)可知:,,,,,,.【點睛】本題考查了平行線的判定與性質,解決本題的關鍵是掌握平行線的判定與性質.13.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質和角平分線的定義解答即可;(3)分當B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質和角平分線的定義解答即可;(3)分當BC∥DE時,當BC∥EF時,當BC∥DF時,三種情況進行解答即可.【詳解】解:(1)作EI∥PQ,如圖,∵PQ∥MN,則PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α=DEA-∠BAC=60°-45°=15°,∵E、C、A三點共線,∴∠β=180°-∠DFE=180°-30°=150°;故答案為:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,F(xiàn)H分別平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)當BC∥DE時,如圖1,∵∠D=∠C=90,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;當BC∥EF時,如圖2,此時∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;當BC∥DF時,如圖3,此時,AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.綜上所述,∠BAM的度數(shù)為30°或90°或120°.【點睛】本題考查了角平分線的定義,平行線性質和判定:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想與方程思想的應用,理清各角度之間的關系是解題的關鍵,也是本題的難點.14.(1)∠DAC;(2)360°;(3)65°【分析】(1)根據(jù)平行線的性質即可得到結論;(2)過C作CF∥AB根據(jù)平行線的性質得到∠D=∠FCD,∠B=∠BCF,然后根據(jù)已知條件即可得到結論;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根據(jù)平行線的性質即可得到結論;(2)過C作CF∥AB根據(jù)平行線的性質得到∠D=∠FCD,∠B=∠BCF,然后根據(jù)已知條件即可得到結論;(3)過點E作EF∥AB,然后根據(jù)兩直線平行內錯角相等,即可求∠BED的度數(shù).【詳解】解:(1)過點A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案為:∠DAC;(2)過C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如圖3,過點E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【點睛】此題考查了平行線的判定與性質,解題的關鍵是正確添加輔助線,利用平行線的性質進行推算.15.(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質即可得出答案;(2)過點B作BD∥a.由平行線的性質得∠2+∠ABD=180°,∠1=∠解析:(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質即可得出答案;(2)過點B作BD∥a.由平行線的性質得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC?∠DBC=60°?∠1,進而得出結論;(3)過點C作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結論.【詳解】解:(1)如圖1,,,,;圖1(2)理由如下:如圖2.過點作,圖2,,,,,,;(3),圖3理由如下:如圖3,過點作,平分,,,又,,,,,又,,.【點睛】本題是三角形綜合題目,考查了平移的性質、直角三角形的性質、平行線的判定與性質、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質和平行線的性質是解題的關鍵.四、解答題16.[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質即可解析:[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質即可證明;[變式思考]根據(jù)角平分線的定義和對頂角相等可得∠CAE=∠DAF、再根據(jù)直角三角形的性質和等角的余角相等即可得出=;[探究延伸]根據(jù)角平分線的定義可得∠EAN=90°,根據(jù)直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據(jù)三角形外角的性質可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點共線

AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點睛】本題考查三角形的外角的性質,直角三角形兩銳角互余,角平分線的有關證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個外角等于與它不相鄰的兩個內角之和,理解并掌握是解決此題的關鍵.17.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內角互補即可求出∠CEN的度數(shù).(3)畫出圖形,求出在MN⊥CD時的旋轉角,再除以30°即得結果.【詳解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如圖,MN⊥CD時,旋轉角為360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒時,直線MN恰好與直線CD垂直.【點睛】本題以學生熟悉的三角板為載體,考查了三角形的內角和、平行線的判定和性質、垂直的定義和旋轉的性質,前兩小題難度不大,難點是第(3)小題,解題的關鍵是畫出適合題意的幾何圖形,弄清求旋轉角的思路和方法,本題的第一種情況是將旋轉角∠DOM放在四邊形DOMF中,用四邊形內角和求解,第二種情況是用周角減去∠DOM的度數(shù).18.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設∠AOB=x,根據(jù)兩直線平行,內錯角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和表示出∠OEC,然后利用三角形的內角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當平行移動AB至∠OBA=60°時,∠OEC=∠OBA.設∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論