解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)試試卷(含答案詳解版)_第1頁
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)試試卷(含答案詳解版)_第2頁
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)試試卷(含答案詳解版)_第3頁
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)試試卷(含答案詳解版)_第4頁
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)試試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在梯形中,,,,那么下列結(jié)論不正確的是()A. B.C. D.2、已知銳角,如圖,(1)在射線上取點(diǎn),,分別以點(diǎn)為圓心,,長為半徑作弧,交射線于點(diǎn),;(2)連接,交于點(diǎn).根據(jù)以上作圖過程及所作圖形,下列結(jié)論錯(cuò)誤的是(

)A. B.C.若,則 D.點(diǎn)在的平分線上3、中,厘米,,厘米,點(diǎn)D為AB的中點(diǎn)如果點(diǎn)P在線段BC上以v厘米秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng)若點(diǎn)Q的運(yùn)動(dòng)速度為3厘米秒,則當(dāng)與全等時(shí),v的值為A. B.3 C.或3 D.1或54、作平分線的作圖過程如下:作法:(1)在和上分別截取、,使.(2)分別以,為圓心,大于的長為半徑作弧,兩弧交于點(diǎn).(3)作射線,則就是的平分線.用下面的三角形全等的判定解釋作圖原理,最為恰當(dāng)?shù)氖牵?/p>

)A. B. C. D.5、如圖,在中,的平分線交于點(diǎn)D,DE//AB,交于點(diǎn)E,于點(diǎn)F,,則下列結(jié)論錯(cuò)誤的是(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在中,按以下步驟作圖:①以點(diǎn)B為圓心,任意長為半徑作弧,分別交AB、BC于點(diǎn)D、E.②分別以點(diǎn)D、E為圓心,大于的同樣長為半徑作弧,兩弧交于點(diǎn)F.③作射線BF交AC于點(diǎn)G.如果,,的面積為18,則的面積為________.2、如圖,已知∠1=∠2、AD=AB,若再增加一個(gè)條件不一定能使結(jié)論成立,則這個(gè)條件是_____.3、如圖,在中,,點(diǎn),都在邊上,,若,則的長為_______.4、如圖是教科書中的一個(gè)片段,由畫圖我們可以得到△,判定這兩個(gè)三角形全等的依據(jù)是__.(1)畫;(2)分別以點(diǎn),為圓心,線段,長為半徑畫弧,兩弧相交于點(diǎn);(3)連接線段,.5、如圖,在△ABC中,AD⊥BC于點(diǎn)D,過A作AEBC,且AE=AB,AB上有一點(diǎn)F,連接EF.若EF=AC,CD=4BD,則=_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,D是△ABC的邊AC上一點(diǎn),點(diǎn)E在AC的延長線上,ED=AC,過點(diǎn)E作EF∥AB,并截取EF=AB,連接DF.求證:DF=CB.2、如圖,AC是∠BAE的平分線,點(diǎn)D是線段AC上的一點(diǎn),∠C=∠E,AB=AD.求證:BC=DE.3、如圖,在中,,BD是的平分線,于點(diǎn)E,點(diǎn)F在BC上,連接DF,且.(1)求證:;(2)若,,求AB的長.4、△ABC、△DPC都是等邊三角形.(1)如圖1,求證:AP=BD;(2)如圖2,點(diǎn)P在△ABC內(nèi),M為AC的中點(diǎn),連PM、PA、PB,若PA⊥PM,且PB=2PM.①求證:BP⊥BD;②判斷PC與PA的數(shù)量關(guān)系并證明.5、如圖,在中,,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作,DE交線段AC于E.(1)點(diǎn)D從B向C運(yùn)動(dòng)時(shí),逐漸變__________(填“大”或“小”),但與的度數(shù)和始終是__________度.(2)當(dāng)DC的長度是多少時(shí),,并說明理由.-參考答案-一、單選題1、A【解析】【分析】A、根據(jù)三角形的三邊關(guān)系即可得出A不正確;B、通過等腰梯形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)即可得出∠ADB=90°,從而得出B正確;C、由梯形的性質(zhì)得出AB∥CD,結(jié)合角的計(jì)算即可得出∠ABC=60°,即C正確;D、由平行線的性質(zhì)結(jié)合等腰三角形的性質(zhì)即可得出∠DAC=∠CAB,即D正確.綜上即可得出結(jié)論.【詳解】A、∵AD=DC,∴AC<AD+DC=2CD,故A不正確;B、∵四邊形ABCD是等腰梯形,∴∠ABC=∠BAD,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),∴∠BAC=∠ABD,∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD=∠BAC,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,B正確,C、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,C正確.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正確;故選:A.【考點(diǎn)】本題考查了梯形的性質(zhì)、平行線的性質(zhì)、等腰三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是逐項(xiàng)分析四個(gè)選項(xiàng)的正誤.本題屬于中檔題,稍顯繁瑣,但好在該題為選擇題,只需由三角形的三邊關(guān)系得出A不正確即可.2、C【解析】【分析】根據(jù)題意可知,即可推斷結(jié)論A;先證明,再證明即可證明結(jié)論B;連接OP,可證明可證明結(jié)論D;由此可知答案.【詳解】解:由題意可知,,,故選項(xiàng)A正確,不符合題意;在和中,,,在和中,,,,故選項(xiàng)B正確,不符合題意;連接OP,,,在和中,,,,點(diǎn)在的平分線上,故選項(xiàng)D正確,不符合題意;若,,則,而根據(jù)題意不能證明,故不能證明,故選項(xiàng)C錯(cuò)誤,符合題意;故選:C.【考點(diǎn)】本題考查角平分線的判定,全等三角形的判定與性質(zhì),明確以某一半徑畫弧時(shí),準(zhǔn)確找到相等的線段是解題的關(guān)鍵.3、C【解析】【分析】此題要分兩種情況:①當(dāng)BD=PC時(shí),計(jì)算出BP的長,進(jìn)而可得運(yùn)動(dòng)時(shí)間,然后再求v;②當(dāng)BD=CQ時(shí),計(jì)算出BP的長,進(jìn)而可得運(yùn)動(dòng)時(shí)間,然后再求v.【詳解】①當(dāng)BD=PC時(shí),∵點(diǎn)D為AB的中點(diǎn),∴BD=AB=6厘米,∵BD=PC,∴BP=9-6=3(厘米),∴CQ=BP=3厘米,∴點(diǎn)Q運(yùn)動(dòng)了3÷3=1秒∴點(diǎn)P在線段BC上的運(yùn)動(dòng)速度是3÷1=3(厘米秒),②當(dāng)BD=CQ時(shí),∴BD=CQ=6厘米,點(diǎn)Q運(yùn)動(dòng)了6÷3=2秒.∵△BDP≌△CQP,∴BP=CP=厘米,∴點(diǎn)P在線段BC上的運(yùn)動(dòng)速度是÷2=2.25(厘米秒),故選C.【考點(diǎn)】此題主要考查了全等三角形的性質(zhì),全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等,關(guān)鍵是要分情況討論,不要漏解.4、A【解析】【分析】根據(jù)作圖過程可得OD=OE,CE=CD,根據(jù)OC為公共邊,利用SSS即可證明△OCE≌△OCD,即可得答案.【詳解】∵分別以,為圓心,大于的長為半徑作弧,兩弧交于點(diǎn);∴CE=CD,在△OCE和△OCD中,,∴△OCE≌△OCD(SSS),故選:A.【考點(diǎn)】本題考查全等三角形的判定,正確找出相等的線段并熟練掌握全等三角形的判定定理是解題關(guān)鍵.5、A【解析】【分析】根據(jù)角平分線的性質(zhì)得到CD=DF=3,故B正確;根據(jù)平行線的性質(zhì)及角平分線得到AE=DE=5,故C正確;由此判斷D正確;再證明△BDF≌△DEC,求出BF=CD=3,故A錯(cuò)誤.【詳解】解:在中,的平分線交于點(diǎn)D,,∴CD=DF=3,故B正確;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正確;∴AC=AE+CE=9,故D正確;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,

∴BF=CD=3,故A錯(cuò)誤;故選:A.【考點(diǎn)】此題考查了角平分線的性質(zhì)定理,平行線的性質(zhì),等邊對(duì)等角證明角相等,全等三角形的判定及性質(zhì),熟記各知識(shí)點(diǎn)并綜合應(yīng)用是解題的關(guān)鍵.二、填空題1、27【解析】【分析】由作圖步驟可知BG為∠ABC的角平分線,過G作GH⊥BC,GM⊥AB,可得GM=GH,然后再結(jié)合已知條件和三角形的面積公式求得GH,最后運(yùn)用三角形的面積公式解答即可.【詳解】解:由作圖作法可知:BG為∠ABC的角平分線過G作GH⊥BC,GM⊥AB∴GM=GH∴,故答案為27.【考點(diǎn)】本題考查了角平分線定理和三角形面積公式的應(yīng)用,通過作法發(fā)現(xiàn)角平分線并靈活應(yīng)用角平分線定理是解答本題的關(guān)鍵.2、DE=BC【解析】【分析】根據(jù)題目中的條件可以得到,再增加條件則不一定成立,從而可以解答本題.【詳解】增加的條件為理由:∵∴∴∵∴不一定成立故答案為:.【考點(diǎn)】本題考查了三角形全等的判定定理,熟記并靈活運(yùn)用各種判定方法是解題關(guān)鍵.3、9.【解析】【分析】根據(jù)等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì)即可求解.【詳解】因?yàn)椤鰽BC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD△ACE(ASA),所以BD=EC,EC=9.【考點(diǎn)】此題主要考查等腰三角形的性質(zhì),解題的關(guān)鍵是熟知全等三角形的判定與性質(zhì).4、【解析】【分析】根據(jù)全等三角形的判定方法解決問題即可.【詳解】解:在和△中,,,故答案為:.【考點(diǎn)】本題考查了作圖?復(fù)雜作圖,全等三角形的判定等知識(shí),解題的關(guān)鍵是理解題意,靈活應(yīng)用所學(xué)知識(shí)解決問題.5、【解析】【分析】在CD上取一點(diǎn)G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點(diǎn)H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點(diǎn)G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點(diǎn)H,∵AD⊥BC于點(diǎn)D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點(diǎn)】此題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì)、有關(guān)面積比問題的求解等知識(shí)與方法,正確地作出所需要的輔助線是解題的關(guān)鍵.三、解答題1、證明過程見解析【解析】【分析】根據(jù)EF∥AB,得到,再根據(jù)已知條件證明,即可得解;【詳解】∵EF∥AB,∴,在和中,,∴,∴;【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì),準(zhǔn)確分析判斷是解題的關(guān)鍵.2、見解析【解析】【分析】根據(jù)角平分線的性質(zhì)證明△BAC≌△DAE,即可得到結(jié)果;【詳解】證明:∵AC是∠BAE的平分線,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.【考點(diǎn)】本題主要考查了三角形的全等判定及性質(zhì),準(zhǔn)確利用角平分線的進(jìn)行計(jì)算是解題的關(guān)鍵.3、(1)證明見解析(2)10【解析】【分析】(1)由角平分線的性質(zhì)可得,證明,進(jìn)而結(jié)論得證;(2)證明,可得,根據(jù)計(jì)算求解即可.(1)證明:(1)∵,∴,又∵BD是的平分線,,∴,,在和中,∵,∴,∴.(2)解:由(1)可得,∴,∵,∴,∴,∵BD是的平分線,∴,在和中,∵,∴,∴,∴,∴AB的長為10.【考點(diǎn)】本題考查了角平分線的性質(zhì),三角形全等的判定與性質(zhì).解題的關(guān)鍵在于熟練掌握角平分線的性質(zhì)并證明三角形全等.4、(1)證明過程見解析;(2)①證明過程見解析;②PC=2PA,理由見解析.【解析】【分析】(1)證明△BCD≌△ACP(SAS),可得結(jié)論;(2)①如圖2中,延長PM到K,使得MK=PM,連接CK.證明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再證明△PDB≌△PCK(SSS),可得結(jié)論;②結(jié)論:PC=2PA.想辦法證明∠DPB=30°,可得結(jié)論.(1)證明:如圖1中,∵△ABC,△CDP都是等邊三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP;(2)證明:如圖2中,延長PM到K,使得MK=PM,連接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可證△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:結(jié)論:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,設(shè)∠DPB=∠CPK=x,則∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA.【考點(diǎn)】本題屬于三角形綜合題,考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),直角三角形30°角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,關(guān)注全等三角形解決問題.5、(1)小;140(2)當(dāng)DC=2時(shí),△ABD≌△DCE,理由見解析【解析】【分析】(1)利用三角形的內(nèi)角和即可得出結(jié)論;(2)當(dāng)DC=2時(shí),利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(1)在△ABD中,∠B+∠BAD+∠A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論