解析卷-四川省康定市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析試題(詳解版)_第1頁
解析卷-四川省康定市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析試題(詳解版)_第2頁
解析卷-四川省康定市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析試題(詳解版)_第3頁
解析卷-四川省康定市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析試題(詳解版)_第4頁
解析卷-四川省康定市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析試題(詳解版)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省康定市中考數(shù)學(xué)真題分類(勾股定理)匯編重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點,直線l經(jīng)過點D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.32、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.453、在△ABC中,,那么△ABC是(

)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形4、下列各組數(shù):①3、4、5

②4、5、6

③2.5、6、6.5

④8、15、17,其中是勾股數(shù)的有(

)A.4組 B.3組 C.2組 D.1組5、如圖,中,,將折疊,使點C與的中點D重合,折痕交于點M,交于點N,則線段的長為(

).A. B. C.3 D.6、如圖,正方形的邊長為10,,,連接,則線段的長為(

)A. B. C. D.7、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(

)A.50cm B.120cm C.140cm D.100cm第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點C到AB的距離是_______.2、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時,梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動,將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.3、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D.E為線段BD上一點,連結(jié)CE,將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上.若AB=10,BC=8,則△ACE的面積為________.4、勘測隊按實際需要構(gòu)建了平面直角坐標系,并標示了A,B,C三地的坐標,數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過A,B兩地.(1)A,B間的距離為______km;(2)計劃修一條從C到鐵路AB的最短公路l,并在l上建一個維修站D,使D到A,C的距離相等,則C,D間的距離為______km.5、如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點E在BC上,將△ABC沿AE折疊,使點B落在AC邊上的點B′處,則BE的長為________________.6、在一棵樹的5米高B處有兩個猴子為搶吃池塘邊水果,一只猴子爬下樹跑到A處(離樹10米)的池塘邊.另一只爬到樹頂D后直接躍到A處,距離以直線計算,如果兩只猴子所經(jīng)過的距離相等,則這棵樹高_______米.7、如圖,該圖形是由直角三角形和正方形構(gòu)成,其中最大正方形的邊長為7,則正方形A、B、C、D的面積之和為__________.8、如圖,在長方形ABCD中,AB=8,AD=10,點E為BC上一點,將△ABE沿AE折疊,點B恰好落在線段DE上的點F處,則BE的長為______.三、解答題(7小題,每小題10分,共計70分)1、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點,且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說明理由;(2)求△ABC的周長.2、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹被折斷,樹的頂部落在離樹根8米處,即,求這棵樹在離地面多高處被折斷(即求AC的長度)?3、如圖,在筆直的鐵路上A、B兩點相距25km,C、D為兩村莊,,,于A,于B,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等,求E應(yīng)建在距A多遠處?4、如圖,CE⊥AB于點E,BD⊥AC于點D,AB=AC.(1)求證:△ABD≌△ACE.(2)連接BC,若AD=6,CD=4,求△ABC的面積.5、臺風(fēng)是一種自然災(zāi)害,它以臺風(fēng)中心為圓心在周圍上千米的范圍內(nèi)形成極端氣候,有極強的破壞力,有一臺風(fēng)中心沿東西方向AB由點A行駛向點B,已知點C為一海港,且點C與直線AB上兩點A、B的距離分別為300km和400km,又AB=500km,以臺風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)海港C會受臺風(fēng)影響嗎?為什么?(2)若臺風(fēng)的速度為20km/h,臺風(fēng)影響該海港持續(xù)的時間有多長?6、如圖,煙臺市正政府決定在相距50km的A、B兩村之間的公路旁E點,修建一個大櫻桃批發(fā)市場,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么大櫻桃批發(fā)市場E應(yīng)建什么位置才能符合要求?7、某海上有一小島,為了測量小島兩端A,B的距離,測量人員設(shè)計了一種測量方法,如圖,已知B是CD的中點,E是BA延長線上的一點,且∠CED=90°,測得AE=16.6海里,DE=60海里,CE=80海里.(1)求小島兩端A,B的距離.(2)過點C作CF⊥AB交AB的延長線于點F,求值.-參考答案-一、單選題1、A【解析】【分析】把要求的最大值的兩條線段經(jīng)過平移后形成一條線段,然后再根據(jù)垂線段最短來進行計算即可.【詳解】解:如圖,過點C作CK⊥l于點K,過點A作AH⊥BC于點H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點D為BC中點,∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長AE,過點C作CN⊥AE于點N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當直線l⊥AC時,最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點】本題主要考查了全等三角形的判定定理和性質(zhì)定理及平移的性質(zhì),構(gòu)建全等三角形是解答此題的關(guān)鍵.2、A【解析】【分析】設(shè)正方形D的面積為x,根據(jù)圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據(jù)圖形得:2+4=x?3.解得:x=9.故選A.【考點】本題考查了勾股定理,根據(jù)圖形推出四個正方形的關(guān)系是解決問題的關(guān)鍵.3、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設(shè)三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.4、C【解析】【詳解】解:∵32+42=52,①符合勾股數(shù)的定義;∵42+52≠62,②不符合勾股數(shù)的定義;∵2.5和6.5不是正整數(shù),③不符合勾股數(shù)的定義;∵82+152=172,④符合勾股數(shù)的定義,是勾股數(shù)的有:①④,共2組,故選:C.5、D【解析】【分析】由折疊的性質(zhì)可得DN=CN,根據(jù)勾股定理可求DN的長,即可得出結(jié)果.【詳解】解:∵D是AB中點,AB=4,∴AD=BD=2,∵將△ABC折疊,使點C與AB的中點D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故選:D.【考點】本題考查了翻折變換、折疊的性質(zhì)、勾股定理,熟練運用折疊的性質(zhì)是本題的關(guān)鍵.6、B【解析】【分析】延長DH交AG于點E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【詳解】解:延長DH交AG于點E∵四邊形ABCD為正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD為直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故選B.【考點】此題考查是正方形的性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)和利用勾股定理解直角三角形是解決此題的關(guān)鍵.7、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點】本題考查了勾股定理的應(yīng)用,理解題意,畫出圖形是解題的關(guān)鍵.二、填空題1、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長,再根據(jù)三角形的面積為定值即可求出則點C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點】本題考查了勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題的關(guān)鍵2、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長,同理可得出AB的長,進而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時,勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.3、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點】本題考查直角三角形中的折疊問題,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練運用勾股定理.4、

20

13【解析】【分析】(1)由垂線段最短以及根據(jù)兩點的縱坐標相同即可求出AB的長度;(2)根據(jù)A、B、C三點的坐標可求出CE與AE的長度,設(shè)CD=x,根據(jù)勾股定理即可求出x的值.【詳解】(1)由A、B兩點的縱坐標相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過點C作l⊥AB于點E,連接AC,作AC的垂直平分線交直線l于點D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設(shè)CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點】本題考查了勾股定理,解題的關(guān)鍵是根據(jù)A、B、C三點的坐標求出相關(guān)線段的長度,本題屬于中等題型.5、.【解析】【分析】首先根據(jù)勾股定理求出BC的長,根據(jù)折疊性質(zhì),可得=AB=3,=BE,∠B=∠=90°,然后設(shè)BE=,根據(jù)勾股定理,列出,求解即可.【詳解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,將△ABC沿AE折疊,∴=AB=3,=BE,∠B=∠=90°,則,設(shè)BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案為.【考點】本題主要考查了翻折變換的性質(zhì)及勾股定理的應(yīng)用;解題的關(guān)鍵是準確找出圖形中隱含的相等關(guān)系.6、【解析】【分析】由題意知AD+DB=BC+CA,設(shè)BD=x,則AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,樹高CD=(5+x)米即可.【詳解】解:由題意知AD+DB=BC+CA,且CA=10米,BC=5米,設(shè)BD=x,則AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故樹高為CD=5+x=7.5(米),答:樹高為7.5米.故答案為:7.5.【考點】本題考查了勾股定理在實際生活中的應(yīng)用,本題中找到AD+DB=BC+CA的等量關(guān)系,并根據(jù)勾股定理列方程求解是解題的關(guān)鍵.7、49【解析】【分析】根據(jù)正方形A,B,C,D的面積和等于最大的正方形的面積,求解即可求出答案.【詳解】如圖對所給圖形進行標注:因為所有的三角形都是直角三角形,所有的四邊形都是正方形,所以正方形A的面積,正方形B的面積,正方形C的面積,正方形D的面積.因為,,所以正方形A,B,C,D的面積和.故答案為:49.【考點】本題主要考查了勾股定理、正方形的性質(zhì),面積的計算,掌握勾股定理是解本題的關(guān)鍵.8、【解析】【分析】設(shè),則,由折疊的性質(zhì)可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【詳解】解:設(shè),則,由折疊的性質(zhì)可知,,,.在中,,.在中,,即,解得.的長為.【考點】本題考查了勾股定理的應(yīng)用,折疊的性質(zhì),熟練掌握勾股定理是解題的關(guān)鍵.三、解答題1、(1)△BDC為直角三角形,理由見解析;(2)△ABC的周長為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長,周長即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC為直角三角形;(2)解:設(shè)AB=xcm,∵等腰△ABC,∴AB=AC=x,則AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+82,∴x=,∴△ABC的周長=2AB+BC=(cm).【考點】本題考查了勾股定理的逆定理,關(guān)鍵是根據(jù)等腰三角形的性質(zhì)、勾股定理以及逆定理的應(yīng)用解答.2、這棵樹在離地面6米處被折斷【解析】【分析】設(shè),利用勾股定理列方程求解即可.【詳解】解:設(shè),∵在中,,∴,∴.答:這棵樹在離地面6米處被折斷【考點】本題考查了勾股定理,熟練掌握勾股定理是解答本題的關(guān)鍵.直角三角形兩條直角邊的平方和等于斜邊的平方.當題目中出現(xiàn)直角三角形,且該直角三角形的一邊為待求量時,常使用勾股定理進行求解.有時也可以利用勾股定理列方程求解.3、E應(yīng)建在距A點15km處【解析】【分析】設(shè),則,根據(jù)勾股定理求得和,再根據(jù)列式計算即可;【詳解】設(shè),則,由勾股定理得:在中,,在中,,由題意可知:,所以:,解得:.所以,E應(yīng)建在距A點15km處.【考點】本題主要考查了勾股定理的實際應(yīng)用,準確計算是解題的關(guān)鍵.4、(1)見解析(2)【解析】【分析】(1)根據(jù)題目所給條件證即可;(2)由可得,由勾股定理可求BD,即可求解;(1)證明:∵,∴,∵,∴.(2)解:∵,∴,在中,,∴.【考點】本題主要考查三角形的全等證明、勾股定理,掌握三角形的全等證明及性質(zhì)是解題的關(guān)鍵.5、(1)會,理由見解析;(2)7h【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而利用三角形面積得出CD的長,從而判斷出海港C是否受臺風(fēng)影響;(2)利用勾股定理得出ED以及EF的長,進而得出臺風(fēng)影響該海港持續(xù)的時間.【詳解】解:(1)如圖所示,過點C作CD⊥AB于D點,∵AC=300km,BC=400km,AB=500km,∴,∴△ABC為直角三角形,∴,∴,∴,∵以臺風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域,∴海港C會受到臺風(fēng)影響;(2)由(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論