版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學上冊《全等三角形》綜合測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖是用直尺和圓規(guī)作一個角等于已知角的示意圖,說明的依據(jù)是(
)A. B. C. D.2、如圖:,,則此題可利用下列哪種方法來判定(
)A.ASA B.AAS C.HL D.缺少條件,不可判定3、如圖,C為線段AE上一動點(不與點,重合),在AE同側分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連結PQ.以下結論錯誤的是(
)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP4、如圖,在和中,,則下列結論中錯誤的是(
)A. B. C. D.E為BC中點5、下列命題的逆命題一定成立的是(
)①對頂角相等;②同位角相等,兩直線平行;③全等三角形的周長相等;④能夠完全重合的兩個三角形全等.A.①②③ B.①④ C.②④ D.②第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,已知,請你添加一個條件,使得,你添加的條件是_____.(不添加任何字母和輔助線)2、如圖,點,,在同一直線上,,,,,若線段與線段的長度之比為,則線段與線段的長度之比為______.3、如圖,AB=DC,BF=CE,需要補充一個條件,就能使△ABE≌△DCF,下面幾個答案:①AE=DF,②AE∥DF;③AB∥DC,④∠A=∠D.其中正確的是_____.4、如圖,中,以點O為圓心,任意長為半徑作弧,交于點M,交于點N,分別以點M,N為圓心,以大于的長為半徑作弧,兩弧交于點C,作射線,過點C作于點D.交于點E,若,則的度數(shù)為_______________.5、如圖,中,,,D為延長線上一點,,且,與的延長線交于點P,若,則__________.三、解答題(5小題,每小題10分,共計50分)1、如圖,,,垂足分別為與相交于點,.(1)求證:;(2)在不添加任何輔助線的情況下,請直接寫出圖中四對全等的三角形..2、如圖,在中,.(1)如圖①所示,直線過點,于點,于點,且.求證:.(2)如圖②所示,直線過點,交于點,交于點,且,則是否成立?請說明理由.3、在中,,點D是直線BC上一點(點D不與點B,C重合),以AD為一邊在AD的右側作,使,,連接CE.(1)如圖(1),若點D在線段BC上,和之間有怎樣的數(shù)量關系?(不必說明理由)(2)若,當點D在射線BC上移動時,如圖(2),和之間有怎樣的數(shù)量關系?說明理由.4、如圖,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大?。唬?)若EF⊥AE交AC于F,求證:∠C=2∠FEC.5、如圖,∠A=∠D=90°,AC=DB,AC、DB相交于點O.求證:OB=OC.-參考答案-一、單選題1、B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D'.【詳解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選B.【考點】本題主要考查了尺規(guī)作圖—作已知角相等的角,解題的關鍵在于能夠熟練掌握全等三角形的判定條件.2、C【解析】【分析】根據(jù)全等三角形的判定定理直接求解.【詳解】解:在Rt△ABC和Rt△DCB中,∴(HL),故選C.【考點】本題考查了全等三角形的判定定理,牢記全等三角形的判定定理是解題的關鍵.3、D【解析】【分析】利用等邊三角形的性質,BC∥DE,再根據(jù)平行線的性質得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正確;根據(jù)△CQB≌△CPA(ASA),得出B正確;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內錯角相等,兩直線平行,得出C正確;根據(jù)∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D錯誤.【詳解】解:∵等邊△ABC和等邊△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD與△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB與△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ為等邊三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正確,∵△CQB≌△CPA,∴AP=BQ,故B正確,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D錯誤;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正確.故選:D.【考點】本題考查了等邊三角形的性質、全等三角形的判定與性質,利用旋轉不變性,解題的關鍵是找到不變量.4、D【解析】【分析】首先證明,推出,,由,推出,推出,即可一一判斷.【詳解】解:∵,∴和為直角三角形,在和中,,∴,∴,,,∵,∴,∴,故A、B、C正確,故選:D.【考點】本題主要考查全等三角形的判定和性質,解題的關鍵是熟練掌握全等三角形的判定和性質.5、C【解析】【分析】求出各命題的逆命題,然后判斷真假即可.【詳解】解:①對頂角相等,逆命題為:相等的角為對頂角,是假命題不符合題意;②同位角相等,兩直線平行,逆命題為:兩直線平行,同位角相等,是真命題,符合題意;③全等三角形的周長相等.逆命題為:周長相等的兩個三角形全等,是假命題,不符合題意;④能夠完全重合的兩個三角形全等.逆命題為:兩個全等三角形能夠完全重合,是真命題,符合題意;故逆命題成立的是②④,故選C.【考點】本題主要考查命題與定理,熟悉掌握逆命題的求法是解本題的關鍵.二、填空題1、或或.【解析】【分析】根據(jù)圖形可知證明已經(jīng)具備了一個公共角和一對相等邊,因此可以利用ASA、SAS、AAS證明兩三角形全等.【詳解】∵,,∴可以添加,此時滿足SAS;添加條件,此時滿足ASA;添加條件,此時滿足AAS,故答案為或或;【考點】本題考查了全等三角形的判定,是一道開放題,解題的關鍵是牢記全等三角形的判定方法.2、或【解析】【分析】根據(jù)平行線的性質得到CE⊥BC,根據(jù)余角的性質得到∠ACB=∠E,根據(jù)全等三角形的性質得到CD=AB,BC=CE,等量代換即可得到結論.【詳解】解:∵AB∥EC,AB⊥BC,∴CE⊥BC,∴∠B=∠DCE=90°,∵AC⊥DE,∴∠ACD+∠CDE=∠CDE+∠E=90°,∴∠ACB=∠E,∵AC=DE,∴△ABC≌△DCE(AAS),∴CD=AB,BC=CE,∵線段AB與線段CE的長度之比為5:8,∴CD:BC=5:8,∴線段BD與線段DC的長度之比為3:5,故答案為:3:5.【考點】本題考查了平行線的性質,全等三角形的判定和性質,熟練掌握全等三角形的判定和性質定理是解題的關鍵.3、①③.【解析】【分析】先求出BE=CF,根據(jù)平行線的性質得出∠AEB=∠DFC,再根據(jù)全等三角形的判定定理推出即可.【詳解】∵BF=CE,∴BF+EF=CE+EF,即BE=CF,①在△ABE和△DCF中,,∴△ABE≌△DCF(SSS),故①正確;②∵AE∥DF,∴∠AEB=∠DFC,根據(jù)AB=CD,BE=CF和∠AEB=∠DFC不能推出△ABE≌△DCF,故②錯誤;③∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),故③正確;④根據(jù)AB=CD,BE=CF和∠A=∠D不能推出△ABE≌△DCF,故④錯誤.故答案為:①③.【考點】本題考查了全等三角形的判定問題,掌握全等三角形的性質以及判定定理是解題的關鍵.4、65°或65度【解析】【分析】根據(jù)作圖先得出OC平分∠AOB,根據(jù),得出,根據(jù)為的外角,得出,即可求出,根據(jù),得出,即可求解.【詳解】解:根據(jù)作圖可知,OC平分∠AOB,∴,∵,,,為的外角,,,,,.故答案為:.【考點】本題主要考查了角平分線的基本作圖,平行線的性質,三角形外角的性質,直角三角形的性質,根據(jù)題意求出是解題的關鍵.5、【解析】【分析】作于,根據(jù)全等三角形性質得出CP=PM,DC=AM,設PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案.【詳解】解:作于,,,,,,,,在和中,,,,,,,,在和中,,,,,設,,,,,故答案為:.【考點】本題考查了三角形內角和定理,全等三角形的性質和判定的應用,主要考查學生的推理能力.三、解答題1、(1)見解析;(2),,,【解析】【分析】(1)根據(jù)垂直的定義得出∠BDF=∠CEF=90°,根據(jù)AAS可以推出△BDF≌△CEF,根據(jù)全等三角形的性質得出即可;(2)根據(jù)全等三角形的性質得出∠B=∠C,BD=CE,DF=EF,求出AB=AC,再根據(jù)全等三角形的判定定理推出△ADF≌△AEF,△ABF≌△ACF,△ACD≌△ABE.【詳解】證明:,在和中(AAS)
⑵,,,理由是:由(1)知:△BFD≌△CFE,所以DF=EF,∠B=∠C,BD=CE,根據(jù)HL可以推出△ADF≌△AEF,所以AD=AE,∵BD=CE,∴AB=AC,根據(jù)SAS可以推出△ABF≌△ACF,根據(jù)HL可以推出△ACD≌△ABE.【考點】本題考查了全等三角形的性質和判定,能熟記全等三角形的判定定理是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.2、(1)見解析;(2)仍然成立,理由見解析【解析】【分析】(1)首先根據(jù)同角的余角相等得到,然后證明,然后根據(jù)全等三角形對應邊相等得到,,然后通過線段之間的轉化即可證明;(2)首先根據(jù)三角形內角和定理得到,然后證明,根據(jù)全等三角形對應邊相等得到,最后通過線段之間的轉化即可證明.【詳解】證明:(1)∵,,∴,∴,∵,∴,∴,在和中,,∴,∴,,∵,∴;(2)仍然成立,理由如下:∵,∵,∴,在和中,,∴,∴,,∵,∴.【考點】此題考查了全等三角形的性質和判定,同角的與相等,三角形內角和定理等知識,解題的關鍵是根據(jù)同角的余角相等或三角形內角和定理得到.3、(1);(2),理由見解析【解析】【分析】(1)根據(jù)題意證明,根據(jù)三角形的內角和即可求解;(2)設AD與CE交于F點,根據(jù)題意證明,根據(jù)平角的性質即可求解.【詳解】(1).理由如下:,.,,,,∴=∵∴;(2).理由如下:設AD與CE交于F點.,.,,,.,.,,.【考點】此題主要考查全等三角形的判定與性質,解題的關鍵是熟知全等三角形的判定定理.4、(1)17.5°;(2)證明過程見解析【解析】【分析】(1)首先計算出∠B,∠BAC的度數(shù),根據(jù)AE是∠BAC的角平分線可得∠EAC=37.5°,再根據(jù)Rt△ADC中直角三角形兩銳角互余可得∠DAC的度數(shù),進而可得答案;(2)過A作AD⊥BC于D,證明∠DAE=∠FEC,由三角形內角和定理得到∠EAC=90°-∠C,進而可得∠DAE=∠DAC-∠EAC,利用等量代換可得∠DAE=∠C即可求解.【詳解】解:(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴在△ABC中,由內角和定理可知:∠BAC=180°-∠B-∠C=180°-70°-35°=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,兩銳角互余,∴∠DAC=90°-35°=55°,∴∠DAE=55°-37.5°=17.5°,故答案為:17.5°;(2)過A點作AD⊥BC于D點,如下圖所示:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°-∠B-∠C)=(180°-3∠C)=90°-∠C,∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-∠C)=(90°-∠C)-(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 棘皮類養(yǎng)殖工崗前工藝分析考核試卷含答案
- 重介質分選工班組建設知識考核試卷含答案
- 圖案打樣工安全意識強化水平考核試卷含答案
- 貨運汽車司機安全管理評優(yōu)考核試卷含答案
- 鑄軋工崗前認知考核試卷含答案
- 起重機械維修工崗前環(huán)保知識考核試卷含答案
- 2024年山西中醫(yī)藥大學馬克思主義基本原理概論期末考試題附答案
- 磚瓦裝出窯工風險評估與管理知識考核試卷含答案
- 高頻電感器制造工常識評優(yōu)考核試卷含答案
- 丙烯酸及酯裝置操作工崗前全能考核試卷含答案
- 2025至2030中國面食行業(yè)市場深度分析及前景趨勢與投資報告
- 2026年滇池學院招聘工作人員(97人)備考題庫及答案1套
- 期末檢測卷(試題)-2025-2026學年一年級上冊數(shù)學 蘇教版
- 2026年土壤改良服務合同協(xié)議
- 2026年樂陵市市屬國有企業(yè)公開招聘工作人員6名備考題庫參考答案詳解
- 基礎知識(期末復習)-2024人教版八年級語文上冊(解析版)
- 江蘇省G4(南師大附中、天一、海安、海門)聯(lián)考2026屆高三年級12月份測試數(shù)學試卷(含答案詳解)
- 2025河北唐山市遷安市招調公務員8人備考題庫附答案
- 2025智能機器人行業(yè)產(chǎn)業(yè)鏈上下游協(xié)同發(fā)展建議
- 服飾搭配技巧培訓課件
- 公文寫作實務及范文指導
評論
0/150
提交評論