解析卷-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題及參考答案詳解(培優(yōu)B卷)_第1頁
解析卷-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題及參考答案詳解(培優(yōu)B卷)_第2頁
解析卷-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題及參考答案詳解(培優(yōu)B卷)_第3頁
解析卷-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題及參考答案詳解(培優(yōu)B卷)_第4頁
解析卷-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題及參考答案詳解(培優(yōu)B卷)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,四邊形ABCD是平行四邊形,過點(diǎn)A作AM⊥BC于點(diǎn)M,交BD于點(diǎn)E,過點(diǎn)C作CN⊥AD于點(diǎn)N,交BD于點(diǎn)F,連接CE,當(dāng)EA=EC,且點(diǎn)M為BC的中點(diǎn)時(shí),AB:AE的值為(

)A.2 B. C. D.2、距考試還有20天的時(shí)間,為鼓舞干勁,老師要求班上每一名同學(xué)要給同組的其他同學(xué)寫一份拼搏進(jìn)取的留言,小明所在的小組共寫了30份留言,該小組共有()A.7人 B.6人 C.5人 D.4人3、如圖,菱形ABCD的兩條對(duì)角線長分別為AC=6,BD=8,點(diǎn)P是BC邊上的一動(dòng)點(diǎn),則AP的最小值為(

)A.4 B.4.8 C.5 D.5.54、如圖,在四邊形ABCD中,,且AD=DC,則下列說法:①四邊形ABCD是平行四邊形;②AB=BC;③AC⊥BD;④AC平分∠BAD;⑤若AC=6,BD=8,則四邊形ABCD的面積為24,其中正確的有(

)A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)5、如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;②連接MN,分別交AB、AC于點(diǎn)D、O;③過C作CEAB交MN于點(diǎn)E,連接AE、CD.則四邊形ADCE的周長為()A.10 B.20 C.12 D.246、如圖,點(diǎn)A,B的坐標(biāo)分別為,點(diǎn)C為坐標(biāo)平面內(nèi)一點(diǎn),,點(diǎn)M為線段的中點(diǎn),連接,則的最大值為()A. B. C. D.7、《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何.”大意是說:已知長方形門的高比寬多6尺8寸,門的對(duì)角線長1丈,那么門的高和寬各是多少(1丈=10尺,1尺=10寸)?若設(shè)門的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=1002二、多選題(3小題,每小題2分,共計(jì)6分)1、如圖,E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論中正確的有(

)A.AE=BF; B.AE⊥BF; C.AO=OE; D.2、若關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根分別是,且滿足,則的值不可能為(

)A.或 B. C. D.不存在3、如圖,在正方形中,,點(diǎn)在邊上,且.將沿對(duì)折至,點(diǎn)落在正方形內(nèi)部點(diǎn)處,延長交邊于點(diǎn),連接,.下列結(jié)論正確的是(

)A. B.C. D.第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計(jì)20分)1、對(duì)于任意實(shí)數(shù)a、b,定義一種運(yùn)算:,若,則x的值為________.2、“降次”是解一元二次方程的基本思想,用這種思想解高次方程x3-x=0,它的解是_____________.3、如圖,直角三角形ABC中,AC=1,BC=2,P為斜邊AB上一動(dòng)點(diǎn).PE⊥BC,PF⊥CA,則線段EF長的最小值為_________.4、如圖,四邊形、是正方形,點(diǎn)、分別在、上,連接,過點(diǎn)作,交于點(diǎn),若,,則________.5、如圖,在邊長為1的正方形ABCD中,等邊△AEF的頂點(diǎn)E、F分別在邊BC和CD上則下列結(jié)論:①CE=CF:②∠AEB=75°;③S△EFC=1;④,其中正確的有______(用序號(hào)填寫)6、已知x=2是關(guān)于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個(gè)根,則k的值為_____.7、某商場(chǎng)銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元,由于疫情,為了擴(kuò)大銷售量,盡快減少庫存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出2件.若商場(chǎng)平均每天銷售這種襯衫的盈利要達(dá)到1200元,則每件襯衫應(yīng)降價(jià)多少元?設(shè)每件襯衫降價(jià)x元,由題意列得方程______.8、已知方程的一根為,則方程的另一根為_______.9、如圖,將邊長為4的正方形ABCD沿對(duì)角線AC剪開,再把△ABC沿著AD方向平移得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為3,則它移動(dòng)的距離AA′等于___;移動(dòng)的距離AA′等于___時(shí),兩個(gè)三角形重疊部分面積最大.10、如果關(guān)于的一元二次方程的一個(gè)解是,那么代數(shù)式的值是___________.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn),四邊形是菱形,點(diǎn)的坐標(biāo)為,點(diǎn)在軸的正半軸上,直線交軸于點(diǎn),邊交軸于點(diǎn),連接.(1)填空:菱形的邊長_________;(2)求直線的解析式;(3)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿折線方向以3個(gè)單位/秒的速度向終點(diǎn)勻速運(yùn)動(dòng),設(shè)的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,①當(dāng)時(shí),求與之間的函數(shù)關(guān)系式;②在點(diǎn)運(yùn)動(dòng)過程中,當(dāng),請(qǐng)直接寫出的值.2、某服裝店在銷售中發(fā)現(xiàn):進(jìn)貨價(jià)為每件50元,銷售價(jià)為每件90元的某品牌服裝平均每天可售出20件.現(xiàn)服裝店決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件服裝降價(jià)1元,那么平均每天就可多售出2件.(1)求銷售價(jià)在每件90元的基礎(chǔ)上,每件降價(jià)多少元時(shí),平均每天銷售這種服裝能盈利1200元,同時(shí)又要使顧客得到較多的實(shí)惠?(2)要想平均每天盈利2000元,可能嗎?請(qǐng)說明理由.3、已知關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.(1)求的取值范圍;(2)若方程的兩根都為整數(shù),求正整數(shù)的值.4、如圖,點(diǎn)E,F(xiàn)分別在菱形ABCD的邊BC,CD上,且BE=DF,求證:∠BAE=∠DAF.5、如圖,在?ABCD中,E,F(xiàn)分別是AD,BC上的點(diǎn),且DE=BF,AC⊥EF,求證:四邊形AECF是菱形.6、如圖,在?ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別為OB,OD的中點(diǎn),延長AE至點(diǎn)G,使EG=AE,連接CG.(1)求證:△ABE≌△CDF;(2)當(dāng)AB與AC滿足什么數(shù)量關(guān)系時(shí),四邊形EGCF是矩形?請(qǐng)說明理由.-參考答案-一、單選題1、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)、垂直的定義、平行線的判定定理可以推知AE∥CF;然后由全等三角形的判定定理ASA推知△ADE≌△CBF;最后根據(jù)全等三角形的對(duì)應(yīng)邊相等知AE=CF,所以對(duì)邊平行且相等的四邊形是平行四邊形;連接AC交BF于點(diǎn)O,根據(jù)EA=EC推知?ABCD是菱形,根據(jù)菱形的鄰邊相等知AB=BC;然后結(jié)合已知條件“M是BC的中點(diǎn),AM⊥BC”證得△ADE≌△CBF(ASA),所以AE=CF,從而證得△ABC是正三角形;最后在Rt△BCF中,求得CF:BC=,利用等量代換知(AE=CF,AB=BC)AB:AE=.【詳解】解:連接AC,∵四邊形ABCD是平行四邊形,∴BC∥AD;∴∠ADE=∠CBD,∵AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF,又∵AM⊥BC,∴AM⊥AD;∵CN⊥AD,∴AM∥CN,∴AE∥CF;∴四邊形AECF為平行四邊形,∵EA=EC,∴?AECF是菱形,∴AC⊥BD,∴平行四邊形ABCD是菱形,∴AB=BC,∵M(jìn)是BC的中點(diǎn),AM⊥BC,∴AB=AC,∴△ABC為等邊三角形,∴∠ABC=60°,∠CBD=30°;在Rt△BCF中,CF:BC=,又∵AE=CF,AB=BC,∴AB:AE=.故選:B.【考點(diǎn)】本題綜合考查了全等三角形的判定與性質(zhì)、菱形的判定與性質(zhì)以及等邊三角形的判定與性質(zhì)等知識(shí)點(diǎn),證得?ABCD是菱形是解題的難點(diǎn).2、B【解析】【分析】設(shè)小組有x人,根據(jù)題意,得x(x-1)=30,解方程即可.【詳解】設(shè)小組有x人,根據(jù)題意,得x(x-1)=30,整理,得,解方程,得(舍去),故選B.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,熟練掌握方程的應(yīng)用是解題的關(guān)鍵.3、B【解析】【分析】由垂線段最短,可得AP⊥BC時(shí),AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】如圖,設(shè)AC與BD的交點(diǎn)為O,∵點(diǎn)P是BC邊上的一動(dòng)點(diǎn),∴AP⊥BC時(shí),AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC=,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故選:B.【考點(diǎn)】本題考查了菱形的性質(zhì),勾股定理,確定當(dāng)AP⊥BC時(shí),AP有最小值是本題關(guān)鍵.4、D【解析】【分析】由,可知四邊形ABCD是平行四邊形,可判斷①的正誤;由AD=DC,可知平行四邊形ABCD是菱形,根據(jù)菱形的性質(zhì)可判斷②③④⑤的正誤.【詳解】解:∵,∴四邊形ABCD是平行四邊形,故①正確;∵AD=DC,∴平行四邊形ABCD是菱形,∴AB=BC,AC⊥BD,AC平分∠BAD,故②③④正確;∵AC=6,BD=8,∴菱形ABCD的面積=,故⑤正確;∴正確的個(gè)數(shù)有5個(gè),故選D.【考點(diǎn)】本題考查了平行四邊形的判定,菱形的判定與性質(zhì).解題的關(guān)鍵在于證明四邊形ABCD是菱形.5、A【解析】【分析】根據(jù)題意得:MN是AC的垂直平分線,即可得AD=CD,AE=CE,然后由CEAB,可證得CD∥AE,繼而證得四邊形ADCE是菱形,再根據(jù)勾股定理求出AD,進(jìn)而求出菱形ADCE的周長.【詳解】:∵分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點(diǎn)M、N,∴MN是AC的垂直平分線,∴AD=CD,AE=CE,∴∠CAD=∠ACD,∠CAE=∠ACE,∵CEAB,∴∠CAD=∠ACE,∴∠ACD=∠CAE,∴CDAE,∴四邊形ADCE是平行四邊形,∴四邊形ADCE是菱形;∴OA=OC=AC=2,OD=OE,AC⊥DE,∵∠ACB=90°,∴DEBC,∴OD是△ABC的中位線,∴OD=BC=×3=1.5,∴AD==2.5,∴菱形ADCE的周長=4AD=10.故選A.【考點(diǎn)】本題考查了作圖-復(fù)雜作圖,線段垂直平分線的性質(zhì),菱形的判定與性質(zhì),三角形中位線的性質(zhì)以及勾股定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.6、B【解析】【分析】如圖所示,取AB的中點(diǎn)N,連接ON,MN,根據(jù)三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時(shí),OM=ON+MN最大,再根據(jù)等腰直角三角形的性質(zhì)以及三角形的中位線即可解答.【詳解】解:如圖所示,取AB的中點(diǎn)N,連接ON,MN,三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時(shí),OM=ON+MN最大,∵,則△ABO為等腰直角三角形,∴AB=,N為AB的中點(diǎn),∴ON=,又∵M(jìn)為AC的中點(diǎn),∴MN為△ABC的中位線,BC=1,則MN=,∴OM=ON+MN=,∴OM的最大值為故答案選:B.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)以及三角形中位線的性質(zhì),解題的關(guān)鍵是確定當(dāng)ON與MN共線時(shí),OM=ON+MN最大.7、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設(shè)門的寬為x寸,則門的高度為(x+68)寸,利用勾股定理及門的對(duì)角線長1丈(100寸),即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設(shè)門的寬為x寸,則門的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用、由實(shí)際問題抽象出一元二次方程,準(zhǔn)確計(jì)算是解題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)正方形的性質(zhì)得AB=AD=DC,∠BAD=∠D=90°,則由CE=DF易得AF=DE,根據(jù)“SAS”可判斷△ABF≌△DAE,所以AE=BF;根據(jù)全等的性質(zhì)得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,則AE⊥BF;連結(jié)BE,BE>BC,BA≠BE,而BO⊥AE,根據(jù)垂直平分線的性質(zhì)得到OA≠OE;最后根據(jù)△ABF≌△DAE得S△ABF=S△DAE,則S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四邊形DEOF.【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,在△ABF和△DAE中∴△ABF≌△DAE,∴AE=BF,所以A選項(xiàng)符合題意;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以B選項(xiàng)符合題意;連結(jié)BE,∵BE>BC,∴BA≠BE,而BO⊥AE,∴OA≠OE,所以C選項(xiàng)不符合題意;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF-S△AOF=S△DAE-S△AOF,∴S△AOB=S四邊形DEOF,所以D選項(xiàng)符合題意.故選ABD.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),線段垂直平分線的判定與性質(zhì),也考查了正方形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.2、ABD【解析】【分析】利用可得,從而得到,解出k結(jié)合根的判別式即可求解.【詳解】解:∵于的一元二次方程的兩個(gè)實(shí)數(shù)根分別是,,∴,∵,∴,即,解得:,當(dāng)時(shí),,∴此時(shí)方程無實(shí)數(shù)根,不合題意,舍去,當(dāng)時(shí),,∴此時(shí)方程有兩個(gè)不相等實(shí)數(shù)根,∴的值為.故選:ABD.【考點(diǎn)】本題主要考查了一元二次方程根與系數(shù)的關(guān)系,熟練掌握若一元二次方程的兩個(gè)實(shí)數(shù)根分別是,,則是解題的關(guān)鍵.3、ABC【解析】【分析】根據(jù)正方形的性質(zhì)得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根據(jù)HL推出Rt△ABG≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6﹣x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,再根據(jù)等角的余角相等即可證得∠BAG=∠FCE,根據(jù)GF=3,EF=2可得GF=GE,進(jìn)而S△FGC=S△GCE=,由此即可求得答案.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°.∵CD=3DE,∴DE=2,CE=4.∵△ADE沿AE折疊得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB.∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故A選項(xiàng)正確;∴BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3,∴BG=GF=CG=3,故B選項(xiàng)正確;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∵∠B=∠BCD=90°,∴∠BAG+∠AGB=∠FCE+∠FCG=90°,∴∠BAG=∠FCE,故C選項(xiàng)正確;∵GF=3,EF=2,∴GF=GE,∴S△FGC=S△GCE=×CG·CE=××3×4=,故D選項(xiàng)錯(cuò)誤,故選:ABC.【考點(diǎn)】本題考查了翻折變換,正方形性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,勾股定理等知識(shí)點(diǎn)的運(yùn)用,依據(jù)翻折的性質(zhì)找出其中對(duì)應(yīng)相等的線段和對(duì)應(yīng)相等的角是解題的關(guān)鍵.三、填空題1、或2【解析】【分析】根據(jù)新定義的運(yùn)算得到,整理并求解一元二次方程即可.【詳解】解:根據(jù)新定義內(nèi)容可得:,整理可得,解得,,故答案為:或2.【考點(diǎn)】本題考查新定義運(yùn)算、解一元二次方程,根據(jù)題意理解新定義運(yùn)算是解題的關(guān)鍵.2、【解析】【分析】先把方程的左邊分解因式,再化為三個(gè)一次方程進(jìn)行降次,再解一次方程即可.【詳解】解:則或或解得:故答案為:【考點(diǎn)】本題考查的是利用因式分解的方法把高次方程轉(zhuǎn)化為一次方程,掌握“因式分解的方法與應(yīng)用”是解本題的關(guān)鍵.3、.【解析】【分析】先連接PC,判定四邊形ECFP是矩形,得到EF=PC,再根據(jù)當(dāng)PC最小時(shí),EF也最小,根據(jù)垂線段最短,可得當(dāng)CP⊥AB時(shí),PC最小,最后根據(jù)面積法,求得CP的長即可得到線段EF長的最小值.【詳解】解:連接PC,∵PE⊥BC,PF⊥CA,∴∠PEC=∠PFC=∠C=90°,∴四邊形ECFP是矩形,∴EF=PC,∴當(dāng)PC最小時(shí),EF也最小,∵垂線段最短,∴當(dāng)CP⊥AB時(shí),PC最小,∵AC=1,BC=2,∴AB=,又∵當(dāng)CP⊥AB時(shí),×AC×BC=×AB×CP,∴.∴線段EF長的最小值為.故答案為:.【考點(diǎn)】本題主要考查了矩形的判定與性質(zhì),勾股定理以及垂線段最短的綜合應(yīng)用,解決問題的關(guān)鍵是運(yùn)用矩形對(duì)角線相等的性質(zhì)進(jìn)行求解.4、【解析】【分析】求出BE的長,再根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形求出四邊形EFCH是平行四邊形,根據(jù)平行四邊形的對(duì)邊相等可得EF=CH,再根據(jù)正方形的性質(zhì)可得AB=BC,AE=EF,然后求出BH=BE即可得解.【詳解】∵AB=4,AE=1,∴BE=AB?AE=4?1=3,∵四邊形ABCD,AEFG都是正方形,∴AD∥EF∥BC,又∵EH∥FC,∴四邊形EFCH平行四邊形,∴EF=CH,∵四邊形ABCD,AEFG都是正方形,∴AB=BC,AE=EF,∴AB?AE=BC?CH,∴BE=BH=3.故答案為3.【考點(diǎn)】本題主要考查正方形和平行四邊形,掌握正方形與平行四邊形的判定與性質(zhì)是解題的關(guān)鍵.5、①②④【解析】【分析】根據(jù)三角形的全等的知識(shí)可以判斷①的正誤;根據(jù)角角之間的數(shù)量關(guān)系,以及三角形內(nèi)角和為180°判斷②的正誤;根據(jù)等邊三角形的邊長求得直角三角形的邊長,從而求得面積③的正誤,根據(jù)勾股定理列方程可以判斷④的正誤.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∵△AEF是等邊三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①說法正確;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②說法正確;∵正方形ABCD的邊長為1,③說法錯(cuò)誤,∵∠AEB=75°,∠AEF=60°,∴∠CEF=45°,∴△CEF是等腰直角三角形,設(shè)BE=DF=x,∴CE=CF=1-x,(不合題意,舍去),∴EF=;④說法正確;∴正確的有①②④.故答案為①②④.【考點(diǎn)】本題主要考查正方形的性質(zhì)的知識(shí)點(diǎn),解答本題的關(guān)鍵是熟練掌握全等三角形的證明以及輔助線的正確作法,此題難度不大.6、﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關(guān)于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因?yàn)閗≠0,所以k的值為﹣3.故答案為﹣3.【考點(diǎn)】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.7、【解析】【分析】設(shè)每件襯衫降價(jià)x元,根據(jù)每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出2件可得銷售量為,則每件襯衫的利潤為,根據(jù)銷售量乘以每件襯衫的利潤等于1200元,列出一元二次方程即可【詳解】解:設(shè)每件襯衫降價(jià)x元,根據(jù)題意得,故答案為:【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,根據(jù)題意列出一元二次方程是解題的關(guān)鍵.8、【解析】【分析】設(shè)方程的另一個(gè)根為c,再根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】解:設(shè)方程的另一個(gè)根為c,∵,∴.故答案為.【考點(diǎn)】本題考查的是根與系數(shù)的關(guān)系,熟記一元二次方程根與系數(shù)的關(guān)系是解答此題的關(guān)鍵.9、

1cm或3cm##3cm或1cm

2cm【解析】【分析】如圖,設(shè)交于交于證明四邊形是平行四邊形,證明是等腰直角三角形,也是等腰直角三角形,設(shè)cm,則再利用面積公式建立方程,解方程即可,同時(shí)利用配方法求解面積最大值時(shí)的平移距離.【詳解】解:如圖,設(shè)交于交于由平移的性質(zhì)可得:四邊形是平行四邊形,由正方形可得:是等腰直角三角形,同理:也是等腰直角三角形,設(shè)cm,則解得:cm或cm重疊部分的面積為:當(dāng)時(shí),重疊部分的面積最大,最大面積為4cm2所以當(dāng)cm時(shí),重疊部分的面積最大.故答案為:1cm或3cm;2cm【考點(diǎn)】本題考查的是正方形的性質(zhì),平行四邊形的判定,等腰直角三角形的判定與性質(zhì),一元二次方程的解法,配方法的應(yīng)用,平移的性質(zhì),熟悉以上基礎(chǔ)知識(shí)是解題的關(guān)鍵.10、【解析】【分析】根據(jù)關(guān)于的一元二次方程的一個(gè)解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關(guān)于的一元二次方程的一個(gè)解是,,,.故答案為:2020.【考點(diǎn)】本題考查一元二次方程的解,解答本題的關(guān)鍵是明確一元二次方程的解的含義.四、解答題1、(1)5(2)(3)①;②或【解析】【分析】(1)在Rt△AOH中利用勾股定理即可求得菱形的邊長;(2)根據(jù)(1)即可求的OC的長,則C的坐標(biāo)即可求得,利用待定系數(shù)法即可求得直線AC的解析式;(3)①根據(jù)S△ABC=S△AMB+SBMC求得M到直線BC的距離為h,然后分成P在AB上和在BC上兩種情況討論,利用三角形的面積公式求解.②將S=2代入①中的函數(shù)解析式求得相應(yīng)的t的值.(1)解:點(diǎn)的坐標(biāo)為,在Rt△AOH中,故答案為:5;(2)∵四邊形ABCO是菱形,∴OC=OA=AB=5,即C(5,0).設(shè)直線AC的解析式y(tǒng)=kx+b,函數(shù)圖像過點(diǎn)A、C,得,解得,直線AC的解析式為,(3)由,令,,則,則,①當(dāng)0<t<時(shí),BP=BA-AP=5-3t,HM=OH-OM=,,,②設(shè)M到直線BC的距離為h,S△ABC=S△AMB+SBMC,,解得,當(dāng)時(shí),,,,當(dāng)時(shí),代入,解得,代入,解得,綜上所述或.【考點(diǎn)】本題考查一次函數(shù)綜合題、待定系數(shù)法、勾股定理、三角形的面積、一元一次方程等知識(shí),解題的關(guān)鍵是熟練掌握待定系數(shù)法確定函數(shù)解析式,學(xué)會(huì)用分類討論的思想思考問題,學(xué)會(huì)構(gòu)建方程解決問題.2、(1)每件降價(jià)20元(2)不可能,理由見解析【解析】【分析】(1)根據(jù)題意列出方程,即每件服裝的利潤×銷售量=總盈利,再求解,把不符合題意的舍去;(2)根據(jù)題意列出方程進(jìn)行求解即可.(1)解:設(shè)每件服裝降價(jià)x元.由題意得:(90-x-50)(20+2x)=1200,解得:x1=20,x2=10,為使顧客得到較多的實(shí)惠,應(yīng)取x=20;答:每件降價(jià)20元時(shí),平均每天銷售這種服裝能盈利1200元,同時(shí)又要使顧客得到較多的實(shí)惠;(2)解:不可能,理由如下:依題意得:(90-x-50)(20+2x)=2000,整理得:x2-30x+600=0,Δ=(-30)2-4×600=900-2400=-1500<0,則原方程無實(shí)數(shù)解.則不可能每天盈利2000元.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是找準(zhǔn)等量關(guān)系,正確列出一元二次

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論