版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省輝縣市中考數(shù)學(xué)真題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、5個紅球、4個白球放入一個不透明的盒子里,從中摸出6個球,恰好紅球與白球都摸到,這個事件()A.不可能發(fā)生 B.可能發(fā)生 C.很可能發(fā)生 D.必然發(fā)生2、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3、如圖,G是正方形ABCD內(nèi)一點,以GC為邊長,作正方形GCEF,連接BG和DE,試用旋轉(zhuǎn)的思想說明線段BG與DE的關(guān)系()A.DE=BG B.DE>BG C.DE<BG D.DE≥BG4、下表中列出的是一個二次函數(shù)的自變量x與函數(shù)y的幾組對應(yīng)值:…-2013……6-4-6-4…下列各選項中,正確的是A.這個函數(shù)的圖象開口向下B.這個函數(shù)的圖象與x軸無交點C.這個函數(shù)的最小值小于-6D.當時,y的值隨x值的增大而增大5、在平面直角坐標系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應(yīng)的函數(shù)表達式為(
)A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,在△ABC中,AB=BC,將△ABC繞點B順時針旋轉(zhuǎn)a度,得到△A1BC1,A1B交AC于點E,A1C1分別交AC,BC于點D,F(xiàn),下列結(jié)論:其中正確的有(
).A.∠CDF=a度B.A1E=CFC.DF=FCD.BE=BF2、下列關(guān)于x的一元二次方程中,沒有兩個不相等的實數(shù)根的方程是(
)A. B. C. D.3、如圖,AB是的直徑,C是上一點,E是△ABC的內(nèi)心,,延長BE交于點F,連接CF,AF.則下列結(jié)論正確的是(
)A. B.C.△AEF是等腰直角三角形 D.若,則4、已知二次函數(shù)y=x2-4x+a,下列說法正確的是()A.當x<1時,y隨x的增大而減小B.若圖象與x軸有交點,則a≥-4C.當a=3時,不等式x2-4x+a<0的解集是1<x<3D.若將圖象向上平移1個單位,再向左平移3個單位后過點(1,-2),則a=-35、如圖,是半圓的直徑,半徑于點,為半圓上一點,,與交于點,連接,,給出以下四個結(jié)論,其中正確的是(
)A.平分 B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、寫出一個滿足“當時,隨增大而減小”的二次函數(shù)解析式______.2、已知二次函數(shù)與x軸有兩個交點,把當k取最小整數(shù)時的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,若新圖象與直線有三個不同的公共點,則m的值為______.3、如圖,四邊形ABCD為⊙O的內(nèi)接正四邊形,△AEF為⊙O的內(nèi)接正三角形,連接DF.若DF恰好是同圓的一個內(nèi)接正多邊形的一邊,則這個正多邊形的邊數(shù)為_____.4、若點A(m,5)與點B(-4,n)關(guān)于原點成中心對稱,則m+n=________.5、在平面直角坐標系中,將點A先向右平移4個單位,再向下平移6個單位得到點B,如果點A和點B關(guān)于原點對稱,那么點A的坐標是____________.四、解答題(6小題,每小題10分,共計60分)1、如圖是兩條互相垂直的街道,且A到B,C的距離都是4千米.現(xiàn)甲從B地走向A地,乙從A地走向C地,若兩人同時出發(fā)且速度都是4千米/時,問何時兩人之間的距離最近?2、小明和小麗先后從A地出發(fā)同一直道去B地,設(shè)小麗出發(fā)第時,小麗、小明離B地的距離分別為、,與x之間的數(shù)表達式,與x之間的函數(shù)表達式是.(1)小麗出發(fā)時,小明離A地的距離為.(2)小麗發(fā)至小明到達B地這段時間內(nèi),兩人何時相距最近?最近距離是多少?3、如圖,在△ABC中,∠CAB=70°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AB'C′的位置,使得CC′AB,求∠CC'A的度數(shù).4、如圖,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當?shù)闹荛L最小時,點的坐標為_____________;(3)點是第四象限內(nèi)拋物線上的動點,連接和.求面積的最大值及此時點的坐標;(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.5、冰墩墩是2022年北京冬季奧運會的吉祥物.冰墩墩以熊貓為原型設(shè)計,寓意創(chuàng)造非凡、探索未來.某超市用2400元購進一批冰墩墩玩偶出售.若進價降低20%,則可以多買50個.市場調(diào)查發(fā)現(xiàn):當每個冰墩墩玩偶的售價是20元時,每周可以銷售200個;每漲價1元,每周少銷售10個.(1)求每個冰墩墩玩偶的進價;(2)設(shè)每個冰墩墩玩偶的售價是x元(x是大于20的正整數(shù)),每周總利潤是w元.①求w關(guān)于x的函數(shù)解析式,并求每周總利潤的最大值;②當每周總利潤不低于1870元時,求每個冰墩墩玩偶售價x的范圍.6、用適當?shù)姆椒ń庀铝蟹匠蹋海?)
(2)-參考答案-一、單選題1、D【解析】【分析】根據(jù)事件的可能性判斷相應(yīng)類型即可.【詳解】5個紅球、4個白球放入一個不透明的盒子里,由于紅球和白球的個數(shù)都小于6,從中摸出6個球,恰好紅球與白球都摸到,是必然事件.故選:D.【考點】本題考查的是可能性大小的判斷,解決這類題目要注意具體情況具體對待.一般地必然事件的可能性大小為1,不可能事件發(fā)生的可能性大小為0,隨機事件發(fā)生的可能性大小在0至1之間.2、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項分析判斷即可得解.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;B.既不是軸對稱圖形,又不是中心對稱圖形,故本選項不符合題意;C.既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意;D.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.故選:C.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、A【解析】【分析】根據(jù)四邊形ABCD為正方形,得出BC=DC,∠BCD=90°,根據(jù)四邊形CEFG為正方形,得出GC=EC,∠GCE=90°,再證∠BCG=∠DCE,△BCG與△DCE具有可旋轉(zhuǎn)的特征即可【詳解】解:∵四邊形ABCD為正方形,∴BC=DC,∠BCD=90°,∵四邊形CEFG為正方形,∴GC=EC,∠GCE=90°,∵∠BCG+∠GCD=∠GCD+∠DCE=90°,∴∠BCG=∠DCE,∴△BCG繞點C順時針方向旋轉(zhuǎn)90°得到△DCE,∴BG=DE,故選項A.【考點】本題考查圖形旋轉(zhuǎn)特征,正方形性質(zhì),三角形全等條件,同角的余角性質(zhì),掌握圖形旋轉(zhuǎn)特征,正方形性質(zhì),三角形全等條件是解題關(guān)鍵.4、C【解析】【分析】利用表中的數(shù)據(jù),求得二次函數(shù)的解析式,再配成頂點式,根據(jù)二次函數(shù)的性質(zhì)逐一分析即可判斷.【詳解】解:設(shè)二次函數(shù)的解析式為,依題意得:,解得:,∴二次函數(shù)的解析式為=,∵,∴這個函數(shù)的圖象開口向上,故A選項不符合題意;∵,∴這個函數(shù)的圖象與x軸有兩個不同的交點,故B選項不符合題意;∵,∴當時,這個函數(shù)有最小值,故C選項符合題意;∵這個函數(shù)的圖象的頂點坐標為(,),∴當時,y的值隨x值的增大而增大,故D選項不符合題意;故選:C.【考點】本題主要考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的性質(zhì),利用二次函數(shù)的性質(zhì)解答是解題關(guān)鍵.5、B【解析】【分析】先求出平移后拋物線的頂點坐標,進而即可得到答案.【詳解】解:∵的頂點坐標為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標為(-2,1),∴所得拋物線對應(yīng)的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標或掌握“左加右減,上加下減”,是解題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)等腰三角形的性質(zhì)由BA=BC得∠A=∠C,再根據(jù)旋轉(zhuǎn)的性質(zhì)得BA=BA1=BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,而根據(jù)對頂角相等得∠BFC1=∠DFC,于是可根據(jù)三角形內(nèi)角和定理得到∠CDF=∠FBC1=α;利用“ASA”證明△BAE≌△BC1F,則BE=BF,所以A1E=CF;由于∠CDF=α,則只有當旋轉(zhuǎn)角等于∠C時才有DF=FC.【詳解】解:∵BA=BC,∴∠A=∠C,∵△ABC繞點B順時針旋轉(zhuǎn)α度,得到△A1BC1,∴BA=BA1,BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,∵∠BFC1=∠DFC,∴∠CDF=∠FBC1=α,所以A正確,∴BA=BA1=BC=BC1,在△BAE和△BC1F中,∴△BAE≌△BC1F(ASA),∴BE=BF,故D正確而BA1=BC,∴A1E=CF,所以B正確;∵∠CDF=α,∴當旋轉(zhuǎn)角等于∠C時,DF=FC,所以C錯誤;故選ABD.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.2、ABC【解析】【分析】根據(jù)根的判別式Δ=b2-4ac的值的符號,可以判定個方程實數(shù)根的情況,注意排除法在解選擇題中的應(yīng)用.【詳解】解:A、∵Δ=b2-4ac=02-4×1×4=-16<0,∴此方程沒有實數(shù)根,故本選項符合題意;B、∵Δ=b2-4ac=(-4)2-4×1×4=0,∴此方程有兩個相等的實數(shù)根,故本選項符合題意;C、∵Δ=b2-4ac=12-4×1×3=-11<0,∴此方程沒有實數(shù)根,故本選項符合題意;D、∵Δ=b2-4ac=22-4×1×(-1)=8>0,∴此方程有兩個不相等的實數(shù)根,故本選項不符合題意;故選:ABC.【考點】本題考查了一元二次方程根的判別式的知識.此題比較簡單,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根與Δ=b2-4ac有如下關(guān)系:①當Δ>0時,方程有兩個不相等的兩個實數(shù)根;②當Δ=0時,方程有兩個相等的兩個實數(shù)根;③當Δ<0時,方程無實數(shù)根.3、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關(guān)鍵.4、ACD【解析】【分析】A、此函數(shù)在對稱軸的左邊是隨著x的增大而減小,在右邊是隨x增大而增大,據(jù)此作答;B、和x軸有交點,就說明△≥0,易求a的取值;C、解一元二次不等式即可;D、根據(jù)左加右減,上加下減作答即可.【詳解】解:∵y=x2?4x+a,∴對稱軸:直線x=2,A、當x<1時,y隨x的增大而減小,故該選項正確;B、當Δ=b2?4ac=16?4a≥0,即a≤4時,二次函數(shù)和x軸有交點,該選項錯誤;C、當a=3時,則不等式x2?4x+3<0,即(x-3)(x-1)<0,∴不等式的解集是1<x<3,故該選項正確;D、y=x2?4x+a配方后是y=(x?2)2+a?4,向上平移1個單位,再向左平移3個單位后,函數(shù)解析式是y=(x-1)2+a?3,把(1,?2)代入函數(shù)解析式,易求a=?3,故該選項正確.故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是掌握有關(guān)二次函數(shù)的增減性、與x軸交點的條件、與一元二次不等式的關(guān)系、上下左右平移的規(guī)律.5、ABCD【解析】【分析】根據(jù)圓周角定理即可得出平分,證明全等即可得到,根據(jù)即可得到,即可得到;【詳解】∵是半圓的直徑,∴,又∵,∴,∵,∴,又∵,∴,∴,∴平分,故A正確;又∵,,∴,∴,故B正確;∵,∴,又∵∠CDE=∠COD=45°,∴,故C正確;∴,∴,故D正確;故選ABCD.【考點】本題主要考查了圓周角定理、直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì),準確計算是解題的關(guān)鍵.三、填空題1、(答案不唯一)【解析】【分析】先根據(jù)二次函數(shù)的圖象和性質(zhì)取對稱軸x=2,設(shè)拋物線的解析式為y=a(x-2)2,由于在拋物線對稱軸的右邊,y隨x增大而減小,得出a<0,于是去a=-1,即可解答.【詳解】解:設(shè)拋物線的解析式為y=a(x-2)2,∵在拋物線對稱軸的右邊,y隨x增大而減小,∴a<0,符合上述條件的二次函數(shù)均可,可取a=-1,則y=-(x-2)2.故答案為:y=-(x-2)2.【考點】本題考查了二次函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的圖象和性質(zhì).2、1或【解析】【分析】先運用根的判別式求得k的取值范圍,進而確定k的值,得到拋物線的解析式,再根據(jù)折疊得到新圖像的解析式,可求出函數(shù)圖象與x軸的交點坐標,畫出函數(shù)圖象,可發(fā)現(xiàn),若直線與新函數(shù)有3個交點,可以有兩種情況:①過交點(-1,0),根據(jù)待定系數(shù)法可得m的值;②不過點(一1,0),與相切時,根據(jù)判別式解答即可.【詳解】解:∵函數(shù)與x軸有兩個交點,∴,解得,當k取最小整數(shù)時,,∴拋物線為,將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,所以新圖象的解析式為(或)
:①因為為的,所以它的圖象從左到右是上升的,當它與新圖象有3個交點時它一定過,把代入得所以,②與相切時,圖象有三個交點,,,解得.故答案為:1或.【考點】本題主要考查了二次函數(shù)圖象與幾何變換、待定系數(shù)法求函數(shù)解析式等知識點,掌握分類討論和直線與拋物線相切時判別式等于零是解答本題的關(guān)鍵.3、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計算⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設(shè)這個正多邊形為n邊形,∵AD,AF分別為⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內(nèi)接一個正十二邊形的一邊.故答案為:12.【考點】本題考查了正多邊形與圓:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓;熟練掌握正多邊形的有關(guān)概念.4、【解析】【分析】根據(jù)關(guān)于原點對稱的點的坐標特征:關(guān)于原點對稱的點,橫縱坐標都互為相反數(shù),進行求解即可.【詳解】解:∵點A(m,5)與點B(-4,n)關(guān)于原點成中心對稱,∴m=4,n=-5,∴m+n=-5+4=-1,故答案為:-1.【考點】本題主要考查了關(guān)于原點對稱點的坐標特征,代數(shù)式求值,熟知關(guān)于原點對稱的點的坐標特征是解題的關(guān)鍵.5、【解析】【分析】先按題目要求對A、B點進行平移,再根據(jù)原點對稱的特征:橫縱坐標互為相反數(shù)進行列方程,求解.【詳解】設(shè),向右平移4個單位,再向下平移6個單位得到∵A、B關(guān)于原點對稱,∴,,解得,,∴故答案為:【考點】本題考查點的平移和原點對稱的性質(zhì),掌握這些是解題關(guān)鍵.四、解答題1、當t=(在0<t≤1的范圍內(nèi))時,S的最小值為千米【解析】【分析】設(shè)兩人均出發(fā)了t時,根據(jù)勾股定理建立甲、乙之間的距離與時間t的函數(shù)關(guān)系式,然后求出二次函數(shù)在一定的取值范圍內(nèi)的最值即可得解.【詳解】設(shè)兩人均出發(fā)了t時,則此時甲到A地的距離是(4-4t)千米,乙離A地的距離是4t千米,由勾股定理,得甲,乙兩人間的距離為:S=,∴當t=(在0<t≤1的范圍內(nèi))時,S的最小值為千米.【考點】本題考查二次函數(shù)的實際應(yīng)用,關(guān)鍵在于根據(jù)題意寫出二次函數(shù)關(guān)系式,再利用求二次函數(shù)的最值方法求最值.2、(1)250;(2)當小麗出發(fā)第時,兩人相距最近,最近距離是【解析】【分析】(1)由x=0時,根據(jù)-求得結(jié)果即可;(2)求出兩人相距的函數(shù)表達式,求出最小值即可.【詳解】解(1)當x=0時,=2250,=2000∴-=2250-2000=250(m)故答案為:250(2)設(shè)小麗出發(fā)第時,兩人相距,則即其中因此,當時S有最小值,也就是說,當小麗出發(fā)第時,兩人相距最近,最近距離是【考點】此題主要考查了二次函數(shù)的性質(zhì)的應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解答本題的關(guān)鍵.3、∠CC'A=70°【解析】【分析】先根據(jù)平行線的性質(zhì),由得∠AC′C=∠CAB=70°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AC=AC′,∠BAB′=∠CAC′,于是根據(jù)等腰三角形的性質(zhì)有∠ACC′=∠AC′C=70°.【詳解】∵,∴∠ACC′=∠CAB=70°,∵△ABC繞點A旋轉(zhuǎn)到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠CC'A=70°,【考點】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.4、(1);(2);(3)面積最大為,點坐標為;(4)存在點,使以點、、、為頂點的四邊形是平行四邊形,,點坐標為,,.【解析】【分析】(1)將點,代入即可求解;(2)BC與對稱軸的交點即為符合條件的點,據(jù)此可解;(3)過點作軸于點,交直線與點,當EF最大時面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對邊平行且相等的性質(zhì)可以得到存在點N使得以B,C,M,N為頂點的四邊形是平行四邊形.分三種情況討論.【詳解】解:(1)拋物線過點,解得:拋物線解析式為.(2)點,∴拋物線對稱軸為直線點在直線上,點,關(guān)于直線對稱,當點、、在同一直線上時,最?。畳佄锞€解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)生數(shù)字素養(yǎng)評價反饋對信息技術(shù)教師教學(xué)行為的影響教學(xué)研究課題報告
- 2025年宜賓市敘州區(qū)婦幼保健計劃生育服務(wù)中心第二次公開招聘聘用人員備考題庫及1套完整答案詳解
- 2025年關(guān)于公開招聘工作人員的備考題庫完整答案詳解
- 成都中醫(yī)藥大學(xué)針灸推拿學(xué)院2025年12月招聘勞務(wù)派遣人員備考題庫及參考答案詳解
- 2025年寧波交投公路營運管理有限公司公開招聘勞務(wù)派遣人員備考題庫完整參考答案詳解
- 安義縣城市建設(shè)投資發(fā)展集團有限公司2025年公開招聘工作人員備考題庫參考答案詳解
- 2025年天津市和平區(qū)衛(wèi)生健康系統(tǒng)事業(yè)單位公開招聘工作人員備考題庫及完整答案詳解一套
- 2025年重慶機場集團有限公司校園招聘35人備考題庫及參考答案詳解1套
- 云南中煙工業(yè)有限責(zé)任公司2026年畢業(yè)生招聘備考題庫及參考答案詳解1套
- 2025年景洪市嘎灑強村管理有限公司人員招聘備考題庫及參考答案詳解一套
- 2025天津大學(xué)管理崗位集中招聘15人筆試備考重點題庫及答案解析
- 2026年人教版(2024)初中美術(shù)七年級上冊期末綜合測試卷及答案(四套)
- 供應(yīng)飯菜應(yīng)急預(yù)案(3篇)
- 2026年遼寧理工職業(yè)大學(xué)單招職業(yè)適應(yīng)性測試題庫及參考答案詳解
- 生物樣本庫課件
- 2026蘇州大學(xué)附屬第二醫(yī)院(核工業(yè)總醫(yī)院)護理人員招聘100人(公共基礎(chǔ)知識)測試題帶答案解析
- 2026中國儲備糧管理集團有限公司湖北分公司招聘33人筆試歷年題庫及答案解析(奪冠)
- 《馬原》期末復(fù)習(xí)資料
- 食品生產(chǎn)企業(yè)GMP培訓(xùn)大綱
- 電動汽車電池包結(jié)構(gòu)安全性分析-洞察及研究
- 《圖形創(chuàng)意與應(yīng)用》全套教學(xué)課件
評論
0/150
提交評論