版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學上冊《軸對稱》定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、下面四個圖形分別是節(jié)能、節(jié)水、低碳和綠色食品標志,在這四個標志中,是軸對稱圖形的是()A. B. C. D.2、以下四個標志,每個標志都有圖案和文字說明,其中的圖案是軸對稱圖形是(
)A. B.C. D.3、若點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,則m+n的值是()A.﹣5 B.﹣3 C.3 D.14、如圖,在△ABC中,DE是AC的垂直平分線,且分別交BC,AC于點D和E,∠B=60°,∠C=25°,則∠BAD為(
)A.50° B.70° C.75° D.80°5、如圖,已知是的角平分線,是的垂直平分線,,,則的長為(
)A.6 B.5 C.4 D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,是內(nèi)一定點,點,分別在邊,上運動,若,,則的周長的最小值為___________.2、在平面直角坐標系中,點P(2,1)關于x軸的對稱點的坐標為_____3、如圖,已知AD是△ABC的中線,E是AC上的一點,BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,則∠ACB=_____.4、點P關于x軸對稱點是,點P關于y軸對稱點是,則__________.5、如圖,已知O為△ABC三邊垂直平分線的交點,且∠A=50°,則∠BOC的度數(shù)為_____度.三、解答題(5小題,每小題10分,共計50分)1、已知點和.試根據(jù)下列條件求出a,b的值.(1)A,B兩點關于y軸對稱;(2)A,B兩點關于x軸對稱;(3)AB∥x軸2、如圖,在△ABC中,AB=AC,點D是BC的中點,連接AD,過點C作CE∥AD,交BA的延長線于點E.(1)求證:EC⊥BC;(2)若∠BAC=120°,試判定△ACE的形狀,并說明理由.3、如圖,是邊長為3的等邊三角形,是等腰三角形,且,以為頂點作一個角,使其兩邊分別交于點,交于點,連接,求的周長.4、如圖,在四邊形中,,,分別是,上的點,連接,,.(1)如圖①,,,.求證:;
(2)如圖②,,當周長最小時,求的度數(shù);(3)如圖③,若四邊形為正方形,點、分別在邊、上,且,若,,請求出線段的長度.5、如圖,中,,,.(1)用直尺和圓規(guī)作的垂直平分線;(保留作圖痕跡,不要求寫作法)(2)若(1)中所作的垂直平分線交于點,求的長.-參考答案-一、單選題1、B【解析】【分析】結合軸對稱圖形的概念進行求解即可.【詳解】解:根據(jù)軸對稱圖形的概念可知:A、不是軸對稱圖形,故本選項錯誤;B、是軸對稱圖形,故本選項錯誤;C、不是軸對稱圖形,故本選項錯誤;D、不是軸對稱圖形,故本選項正確.故選:B.【考點】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.2、D【解析】【分析】根據(jù)軸對稱圖形的定義判斷即可【詳解】∵A,B,C都不是軸對稱圖形,∴都不符合題意;D是軸對稱圖形,符合題意,故選D.【考點】本題考查了軸對稱圖形的定義,準確理解軸對稱圖形的定義是解題的關鍵.3、D【解析】【分析】根據(jù)關于y軸的對稱點的坐標特點:橫坐標互為相反數(shù),縱坐標不變,據(jù)此求出m、n的值,代入計算可得.【詳解】∵點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,∴1+m=3,1﹣n=2,解得:m=2,n=﹣1,所以m+n=2﹣1=1,故選D.【考點】本題考查了關于y軸對稱的點,熟練掌握關于y軸對稱的兩點的橫坐標互為相反數(shù),縱坐標不變是解題的關鍵.4、B【解析】【分析】根據(jù)線段垂直平分線的性質得到DA=DC,根據(jù)等腰三角形的性質得到∠DAC=∠C,根據(jù)三角形內(nèi)角和定理求出∠BAC,計算即可.【詳解】∵DE是AC的垂直平分線,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故選B.【考點】本題考查的是線段垂直平分線的性質、等腰三角形的性質,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.5、D【解析】【分析】根據(jù)ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數(shù)的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【考點】本題考查了線段垂直平分線的性質,三角形內(nèi)角和定理,含30度角的直角三角形的性質,余弦等,結合圖形熟練應用相關的性質及定理是解題的關鍵.二、填空題1、3【解析】【分析】如圖,作P關于OA,OB的對稱點C,D.連接OC,OD.則當M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.根據(jù)對稱的性質可以證得:△COD是等邊三角形,據(jù)此即可求解.【詳解】如圖,作P關于OA,OB的對稱點C,D.連接OC,OD.則當M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.∵點P關于OA的對稱點為C,∴PM=CM,OP=OC,∠COA=∠POA;∵點P關于OB的對稱點為D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等邊三角形,∴CD=OC=OD=3.∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=3.【考點】此題主要考查軸對稱--最短路線問題,綜合運用了等邊三角形的知識.正確作出圖形,理解△PMN周長最小的條件是解題的關鍵.2、(2,1)【解析】【分析】根據(jù)與x軸對稱的點的性質,求出對稱點的坐標即可.【詳解】∵對稱點與點P(2,1)關于x軸對稱∴保持橫坐標不變,縱坐標取相反數(shù)∴對稱點的坐標為故答案為:.【考點】本題考查了關于x軸的對稱點的坐標問題,掌握與x軸對稱的點的性質是解題的關鍵.3、100°##100度【解析】【分析】延長AD到M,使得DM=AD,連接BM,證△BDM≌△CDA(SAS),得得到BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再證△BFM是等腰三角形,求出∠MBF的度數(shù),即可解決問題.【詳解】解:如圖,延長AD到M,使得DM=AD,連接BM,在△BDM和△CDA中,,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°﹣∠M﹣∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF﹣∠EBC=100°,∴∠C=∠DBM=100°,故答案為:100°.【考點】本題考查全等三角形的判定和性質、等腰三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考??碱}型.4、1【解析】【分析】根據(jù)關于坐標軸的對稱點的坐標特征,求出a,b的值,即可求解.【詳解】∵點P關于x軸對稱點是,∴P(a,-2),∵點P關于y軸對稱點是,∴b=-2,a=3,∴1,故答案是:1.【考點】本題主要考查關于坐標軸對稱的點的坐標特征,熟練掌握“關于x軸對稱的兩點,橫坐標相等,縱坐標互為相反數(shù);關于y軸對稱的兩點,橫坐標互為相反數(shù),縱坐標相等”是解題的關鍵.5、100【解析】【分析】連接AO延長交BC于D,根據(jù)線段垂直平分線的性質可得OB=OA=OC,再根據(jù)等腰三角形的等邊對等角和三角形的外角性質可得∠BOC=2∠A,即可求解.【詳解】解:連接AO延長交BC于D,∵O為△ABC三邊垂直平分線的交點,∴OB=OA=OC,∴∠OBA=∠OAB,∠OCA=∠OAC,∵∠BOD=∠OBA+∠OAB=2∠OAB,∠COD=∠OCA+∠OAC=2∠OAC,∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2∠BAC,∵∠BAC=50°,∴∠BOC=100°.三、解答題1、(1),;(2),;(3),【解析】【分析】(1)關于y軸對稱,縱坐標不變,橫坐標變?yōu)橄喾磾?shù),據(jù)此可得a,b的值;(2)關于x軸對稱,橫坐標不變,縱坐標變?yōu)橄喾磾?shù),據(jù)此可得a,b的值;(3)AB∥x軸,即兩點的縱坐標相同,橫坐標不相同,據(jù)此可得a,b的值.【詳解】解:(1)因為A,B兩點關于y軸對稱,所以,則,;(2)因為A,B兩點關于x軸對稱,所以則,;(3)因為x軸則滿足,即,,即.【考點】本題考查了關于x軸的對稱點的坐標特點以及關于y軸的對稱點的坐標特點,即點P(x,y)關于x軸對稱點P的坐標是(x,-y),關于y軸對稱點P′的坐標是(-x,y).2、(1)見詳解(2)見詳解【解析】【分析】(1)根據(jù)等腰三角形三線合一的性質得到AD⊥BC,然后根據(jù)CE∥AD即可得到結論;(2)根據(jù)∠BAC=120°,得到∠BAD=60°,∠EAC=60°,由CE∥AD得到∠EAC=∠E=∠ECA=60°,即可證得結論.(1)證明:∵AB=AC,點D是BC的中點,∴AD⊥BC,又∵CE∥AD,∴EC⊥BC;(2)解:△ACE是等邊三角形,理由如下:∵∠BAC=120°,∴∠BAD=∠BAC=60°,∠EAC=60°,又∵CE∥AD,∴∠E=60°,∴∠EAC=∠E=∠ECA=60°,∴△ACE是等邊三角形.【考點】本題考查了等腰三角形的性質,平行線的性質,等邊三角形的判定,熟練掌握性質定理是解題的關鍵.3、的周長為6.【解析】【分析】要求△AMN的周長,根據(jù)題目已知條件無法求出三條邊的長,只能把三條邊長用其它已知邊長來表示,所以需要作輔助線,延長AB至F,使BF=CN,連接DF,通過證明△BDF≌△CDN,及△DMN≌△DMF,從而得出MN=MF,△AMN的周長等于AB+AC的長.【詳解】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是邊長為3的等邊三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延長AB至F,使BF=CN,連接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM為公共邊∴△DMN≌△DMF,∴MN=MF∴△AMN的周長是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.【考點】此題主要利用等邊三角形和等腰三角形的性質來證明三角形全等,構造另一個三角形是解題的關鍵.4、(1)見解析;(2);(3).【解析】【分析】(1)延長到點G,使,連接,首先證明,則有,,然后利用角度之間的關系得出,進而可證明,則,則結論可證;(2)分別作點A關于和的對稱點,,連接,交于點,交于點,根據(jù)軸對稱的性質有,,當點、、、在同一條直線上時,即為周長的最小值,然后利用求解即可;(3)旋轉至的位置,首先證明,則有,最后利用求解即可.【詳解】(1)證明:如解圖①,延長到點,使,連接,在和中,.,,,,.,在和中,.,;(2)解:如解圖,分別作點A關于和的對稱點,,連接,交于點,交于點.由對稱的性質可得,,此時的周長為.當點、、、在同一條直線上時,即為周
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026廣州中考:歷史必背知識點總結
- 2026成都中考:英語高頻考點
- 2026年歷史知識綜合測試題及答案
- 選修1-1數(shù)學知識課件
- 2026年法律文書寫作與法律思維培養(yǎng)考核題
- 雨課堂學堂在線學堂云傳染病學(山西醫(yī)科大學)單元測試考核答案
- 遠程非現(xiàn)場執(zhí)法培訓課件
- 2026和田縣公益性崗位公開招聘(第一批130人)備考考試題庫及答案解析
- 2026江蘇蘇州張家港農(nóng)商銀行寒假實習招募備考題庫及參考答案詳解一套
- 2026黑龍江七臺河市第三醫(yī)院招聘編外人員2人考試參考試題及答案解析
- 2024年常州工業(yè)職業(yè)技術學院單招職業(yè)適應性測試題庫附答案解析
- 2025年新興產(chǎn)業(yè)招商引資項目可行性研究報告
- 2025年社區(qū)矯正法試題附答案
- 動物醫(yī)院年度總結匯報
- 項目監(jiān)理安全生產(chǎn)責任制度
- 廣東電力市場交易系統(tǒng) -競價登記操作指引 新能源項目登記操作指引(居民項目主體)
- 安全生產(chǎn)安全法律法規(guī)
- 地源熱泵機房施工規(guī)劃與組織方案
- 太倉市高一化學期末考試卷及答案
- 2025年秋浙教版(2024)初中數(shù)學八年級(上冊)教學計劃及進度表(2025-2026學年第一學期)
- 設備日常維護保養(yǎng)培訓課件
評論
0/150
提交評論