考點解析-湖北省石首市中考數學真題分類(勾股定理)匯編重點解析試題(含答案及解析)_第1頁
考點解析-湖北省石首市中考數學真題分類(勾股定理)匯編重點解析試題(含答案及解析)_第2頁
考點解析-湖北省石首市中考數學真題分類(勾股定理)匯編重點解析試題(含答案及解析)_第3頁
考點解析-湖北省石首市中考數學真題分類(勾股定理)匯編重點解析試題(含答案及解析)_第4頁
考點解析-湖北省石首市中考數學真題分類(勾股定理)匯編重點解析試題(含答案及解析)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省石首市中考數學真題分類(勾股定理)匯編重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內的點F處,連接CF,則CF的長為()A. B. C. D.2、如圖,在△ABC中,AD,BE分別是BC,AC邊上的中線,且AD⊥BE,垂足為點F,設BC=a,AC=b,AB=c,則下列關系式中成立的是(

)A.a2+b2=5c2 B.a2+b2=4c2 C.a2+b2=3c2 D.a2+b2=2c23、《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何.”大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少(1丈=10尺,1尺=10寸)?若設門的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=10024、如圖,中,,將折疊,使點C與的中點D重合,折痕交于點M,交于點N,則線段的長為(

).A. B. C.3 D.5、有一個邊長為1的正方形,以它的一條邊為斜邊,向外作一個直角三角形,再分別以直角三角形的兩條直角邊為邊,向外各作一個正方形,稱為第一次“生長”(如圖1);再分別以這兩個正方形的邊為斜邊,向外各自作一個直角三角形,然后分別以這兩個直角三角形的直角邊為邊,向外各作一個正方形,稱為第二次“生長”(如圖2)……如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2021次后形成的圖形中所有的正方形的面積和是(

)A.1 B.2020 C.2021 D.20226、勾股定理是“人類最偉大的十個科學發(fā)現(xiàn)之一”.我國對勾股定理的證明是由漢代的趙爽在注解《周髀算經》時給出的,他用來證明勾股定理的圖案被稱為“趙爽弦圖”.2002年在北京召開的國際數學大會選它作為會徽.下列圖案中是“趙爽弦圖”的是(

)A. B. C. D.7、如圖,在中,,兩直角邊,,現(xiàn)將AC沿AD折疊,使點C落在斜邊AB上的點E處,則CD長為(

)A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、我國古代數學著作《九章算術》中記載了一個問題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長度單位,1丈10尺)其大意為:有一個水池,水面是一個邊長為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點,它的頂端B恰好到達池邊的水面D處,問水的深度是多少?則水深DE為_____尺.2、勾股定理最早出現(xiàn)在商高的《周髀算經》:“勾廣三,股修四,經隅五”.觀察下列勾股數:3,4,5;5,12,13;7,24,25;…,這類勾股數的特點是:勾為奇數,弦與股相差為1,柏拉圖研究了勾為偶數,弦與股相差為2的一類勾股數,如:6,8,10;8,15,17;…,若此類勾股數的勾為2m(m≥3,m為正整數),則其弦是________(結果用含m的式子表示).3、公元三世紀,我國漢代數學家趙爽在注解《周髀算經》時給出的“趙爽弦圖”,它由四個全等的直角三角形與中間的小正方形拼成的一個大正方形,如果小正方形面積是49,直角三角形中較小銳角θ的正切為,那么大正方形的面積是_____.4、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長為15+9,則CD的長為_____.5、如圖,在長方形ABCD中,AB=8,AD=10,點E為BC上一點,將△ABE沿AE折疊,點B恰好落在線段DE上的點F處,則BE的長為______.6、我國古代數學著作《九章算術》中的一個問題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問折斷處離地面的高度為多少尺?如圖,設折斷處離地面的高度為x尺,根據題意,可列出關于x方程為:__________.7、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風吹來,蘆葦的頂端D恰好到達水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米8、如圖,在中,,于點D.E為線段BD上一點,連結CE,將邊BC沿CE折疊,使點B的對稱點落在CD的延長線上.若,,則的面積為__________.三、解答題(7小題,每小題10分,共計70分)1、如圖,將RtABC紙片沿AD折疊,使直角頂點C與AB邊上的點E重合,若AB=10cm,AC=6cm,求線段BD的長.2、如圖,在4×4的正方形網格中,每個小正方形的邊長均為1.(1)請在所給網格中畫一個邊長分別為,,的三角形;(2)此三角形的面積是.3、如圖,點是內一點,把繞點順時針旋轉得到,且,,.(1)判斷的形狀,并說明理由;(2)求的度數.4、設直角三角形的兩條直角邊長及斜邊上的高分別為a,b及h,求證:.5、如圖,點B,F(xiàn),C,E在同一條直線上,,且.(1)求證:.(2)若,,,求BE的長.6、已知:整式A=(n2﹣1)2+(2n)2,整式B>0.嘗試化簡整式A.發(fā)現(xiàn)A=B2.求整式B.聯(lián)想:由上可知,B2=(n2﹣1)2+(2n)2,當n>1時,n2﹣1,2n,B為直角三角形的三邊長,如圖,填寫下表中B的值;直角三角形三邊n2﹣12nB勾股數組Ⅰ8勾股數組Ⅱ357、如圖,中,,,是邊上一點,且,若.求的長.-參考答案-一、單選題1、C【解析】【分析】連接BF,(見詳解圖),由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點,可知BE=3,根據勾股定理即可求得AE;根據三角形的面積公式可求得BH,進而可得到BF的長度;結合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據勾股定理有AE=AB+BE代入數據求得AE=5根據三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數據求得CF=故答案為:【考點】此題考查矩形的性質和折疊問題,解題關鍵在于利用好折疊的性質,對應點的連線被折痕垂直平分.2、A【解析】【詳解】設EF=x,DF=y(tǒng),根據三角形重心的性質得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加減消元法消去x、y得到a、b、c的關系.【解答】解:設EF=x,DF=y(tǒng),∵AD,BE分別是BC,AC邊上的中線,∴點F為△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故選:A.【點評】本題考查了三角形的重心:重心到頂點的距離與重心到對邊中點的距離之比為2:1.也考查了勾股定理.3、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設門的寬為x寸,則門的高度為(x+68)寸,利用勾股定理及門的對角線長1丈(100寸),即可得出關于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設門的寬為x寸,則門的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點】本題主要考查了勾股定理的應用、由實際問題抽象出一元二次方程,準確計算是解題的關鍵.4、D【解析】【分析】由折疊的性質可得DN=CN,根據勾股定理可求DN的長,即可得出結果.【詳解】解:∵D是AB中點,AB=4,∴AD=BD=2,∵將△ABC折疊,使點C與AB的中點D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故選:D.【考點】本題考查了翻折變換、折疊的性質、勾股定理,熟練運用折疊的性質是本題的關鍵.5、D【解析】【分析】根據題意可得每“生長”一次,面積和增加1,據此即可求得“生長”了2021次后形成的圖形中所有的正方形的面積和.【詳解】解:如圖,由題意得:SA=1,由勾股定理得:SB+SC=1,則“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得:“生長”了2次后形成的圖形中所有的正方形面積和為3,“生長”了3次后形成的圖形中所有正方形的面積和為4,……“生長”了2021次后形成的圖形中所有的正方形的面積和是2022,故選:D【考點】本題考查了勾股數規(guī)律問題,找到規(guī)律是解題的關鍵.6、B【解析】【分析】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形.【詳解】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形,如圖所示:故選B.【考點】本題主要考查了勾股定理的證明,證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用大圖形的面積等于幾個小圖形的面積和化簡整理得到勾股定理.7、A【解析】【分析】先根據勾股定理求得AB的長,再根據折疊的性質求得AE,BE的長,從而利用勾股定理可求得CD的長.【詳解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折疊的性質得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm?6cm=4cm,∠BED=90°,設CD=x,則BD=BC?CD=8?x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8?x)2,解得:x=3,∴CD=3cm,故選:A.【考點】本題考查了折疊的性質,勾股定理等知識;熟記折疊性質并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關鍵.二、填空題1、12【解析】【分析】設水深為h尺,則蘆葦長為(h+1)尺,根據勾股定理列方程,解出h即可.【詳解】設水深為h尺,則蘆葦長為(h+1)尺,根據勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點】本題主要考查勾股定理的應用,熟練根據勾股定理列出方程是解題的關鍵.2、m2+1【解析】【分析】2m為偶數,設其股是a,則弦為a+2,根據勾股定理列方程即可得到結論.【詳解】∵2m為偶數,∴設其股是a,則弦為a+2,根據勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,∴弦長為m2+1,故答案為:m2+1.【考點】本題考查了勾股數,勾股定理,熟練掌握勾股定理是解題的關鍵.3、169.【解析】【分析】由題意知小正方形的邊長為7.設直角三角形中較小邊長為a,較長的邊為b,運用正切函數定義求解.【詳解】解:由題意知,小正方形的邊長為7,設直角三角形中較小邊長為a,較長的邊為b,則tanθ=短邊:長邊=a:b=5:12.所以b=a,①又以為b=a+7,②聯(lián)立①②,得a=5,b=12.所以大正方形的面積是:a2+b2=25+144=169.故答案是:169.【考點】本題主要考查了解直角三角形、勾股定理的證明和正方形的面積,掌握解直角三角形、勾股定理的證明和正方形的面積是解題的關鍵.4、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長的計算,熟記直角三角形的性質是解題的關鍵.5、【解析】【分析】設,則,由折疊的性質可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【詳解】解:設,則,由折疊的性質可知,,,.在中,,.在中,,即,解得.的長為.【考點】本題考查了勾股定理的應用,折疊的性質,熟練掌握勾股定理是解題的關鍵.6、【解析】【分析】設折斷處離地面的高度為x尺,根據勾股定理列出方程即可【詳解】解:設折斷處離地面的高度為x尺,根據題意可得:故答案為:【考點】本題考查了勾股定理的應用,掌握勾股定理是解題的關鍵.7、8【解析】【分析】先設水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點】本題考查了勾股定理的應用,從現(xiàn)實圖形中抽象出勾股定理這一模型是解答本題的關鍵.8、【解析】【分析】在△ABC中由等面積求出,進而得到,設BE=x,進而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數據:∴,解得,∴,∴,故答案為:.【考點】本題考查了勾股定理求線段長、折疊的性質等,解題的關鍵是掌握折疊的性質,熟練使用勾股定理求線段長.三、解答題1、5【解析】【分析】利用勾股定理先求出的值,根據折疊的性質可得出,,,設,列方程求解即可.【詳解】解:由題意可知:,,則,,,設,則,∴解方程得:因此,的長為所以,【考點】本題考查的知識點是勾股定理的應用,根據題意構造直角三角形是解此題的關鍵.2、(1)畫圖見解析;(2)【解析】【分析】(1)利用勾股定理在網格中確定再順次連接即可;(2)利用長方形的面積減去周圍三個三角形的面積即可.【詳解】解:(1)如圖,即為所求作的三角形,其中:(2)故答案為:【考點】本題考查的是網格中作三角形,勾股定理的應用,網格三角形的面積的計算,掌握“利用勾股定理求解網格三角形的邊長”是解本題的關鍵.3、(1)是直角三角形,理由見解析;(2)150°.【解析】【分析】(1)求出DE,CE,CD長,根據勾股逆定理可知的形狀;(2)由等邊三角形角的性質和全等三角形角的性質可知的度數【詳解】解:(1)是直角三角形理由如下:繞點順時針旋轉得到,,,,是等邊三角形,,又,,是直角三角形.(2)由(1)得,,是等邊三角形,,,.【考點】本題是三角形綜合題,主要考查了全等三角形的證明和性質、等邊三角形的性質和判定、勾股逆定理,熟練應用等邊三角形的性質求線段長及角度是解題的關鍵.4、見解析【解析】【分析】設斜邊為c,根據勾股定理即可得出c=,再由三角形的面積公式即可得出結論.【詳解】證明:設斜邊為c,根據勾股定理即可得出c=,∵ab=ch,∴ab=h,即a2b2=a2h2+b2h2,∴=,即.【考點】本題考查的是勾股定理,熟知在任何一個直角三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論