解析卷北師大版9年級數(shù)學(xué)上冊期中試題帶答案詳解(研優(yōu)卷)_第1頁
解析卷北師大版9年級數(shù)學(xué)上冊期中試題帶答案詳解(研優(yōu)卷)_第2頁
解析卷北師大版9年級數(shù)學(xué)上冊期中試題帶答案詳解(研優(yōu)卷)_第3頁
解析卷北師大版9年級數(shù)學(xué)上冊期中試題帶答案詳解(研優(yōu)卷)_第4頁
解析卷北師大版9年級數(shù)學(xué)上冊期中試題帶答案詳解(研優(yōu)卷)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

北師大版9年級數(shù)學(xué)上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、一元二次方程配方后可化為(

)A. B.C. D.2、如圖,菱形ABCD中,∠ABC=60°,AB=4,E是邊AD上一動點,將△CDE沿CE折疊,得到△CFE,則△BCF面積的最大值是(

)A.8 B. C.16 D.3、平行四邊形、矩形、菱形、正方形共有的性質(zhì)是(

).A.對角線互相平分 B.對角線相等 C.對角線互相垂直 D.對角形互相垂直平分4、如圖,已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值是()A.5 B.10 C.6 D.85、如圖,在平面直角坐標(biāo)系中、四邊形OABC為菱形,O為原點,A點坐標(biāo)為(8,0),∠AOC=60°,則對角線交點E的坐標(biāo)為(

)A.(4,2) B.(2,4) C.(2,6) D.(6,2)6、已知關(guān)于x的一元二次方程x2﹣3x+1=0有兩個不相等的實數(shù)根x1,x2,則x12+x22的值是()A.﹣7 B.7 C.2 D.﹣27、已知關(guān)于x的一元二次方程標(biāo)有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A. B.C.且 D.二、多選題(3小題,每小題2分,共計6分)1、已知關(guān)于的一元二次方程,下列命題是真命題的有(

)A.若,則方程必有實數(shù)根B.若,,則方程必有兩個不相等的實根C.若是方程的一個根,則一定有成立D.若是一元二次方程的根,則2、下列關(guān)于矩形的說法中錯誤的是()A.矩形的對角線互相垂直且平分 B.矩形的對角線相等且互相平分C.對角線相等的四邊形是矩形 D.對角線互相平分的四邊形是矩形3、矩形一定具有的性質(zhì)是().A.對角線相等 B.內(nèi)角和為180° C.鄰邊相等 D.對角互補第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、如圖,菱形ABCD的對角線AC,BD相交于點O,過點A作AH⊥BC于點H,連接OH.若OB=4,S菱形ABCD=24,則OH的長為______________.2、已知關(guān)于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,則m=_____.3、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內(nèi)旋轉(zhuǎn),點P的對應(yīng)點為點Q,連接AQ,DQ.當(dāng)∠ADQ=90°時,AQ的長為______.4、如圖,在長方形中,,在上存在一點、沿直線把折疊,使點恰好落在邊上的點處,若,那么的長為________.5、有一架豎直靠在直角墻面的梯子正在下滑,一只貓緊緊盯住位于梯子正中間的老鼠,等待與老鼠距離最小時撲捉.把墻面、梯子、貓和老鼠都理想化為同一平面內(nèi)的線或點,模型如圖,,點,分別在射線,上,長度始終保持不變,,為的中點,點到,的距離分別為4和2.在此滑動過程中,貓與老鼠的距離的最小值為_________.6、一個直角三角形的兩條直角邊相差5cm,面積是7cm2,則其斜邊的長是___.7、如圖,在ABC中,點D、E、F分別在邊AB、BC、CA上,且DE∥CA,DF∥BA,下列四種說法:①四邊形AEDF是平行四邊形;②如果∠BAC=90°,那么四邊形AEDF是菱形;③如果AD平分∠BAC,那么四邊形AEDF是菱形;④如果AB=AC,那么四邊形AEDF是菱形.其中,正確的有_____.(只填寫序號)8、關(guān)于的一元二次方程有一個根是,則的值是_______.9、在解一元二次方程x2+bx+c=0時,小明看錯了一次項系數(shù)b,得到的解為x1=2,x2=3;小剛看錯了常數(shù)項c,得到的解為x1=1,x2=5.請你寫出正確的一元二次方程________.10、對于任意實數(shù)a、b,定義一種運算:,若,則x的值為________.四、解答題(6小題,每小題10分,共計60分)1、圓周率是無限不循環(huán)小數(shù).歷史上,祖沖之、劉徽、韋達(dá)、歐拉等數(shù)學(xué)家都對有過深入的研究.目前,超級計算機已計算出的小數(shù)部分超過31.4萬億位.有學(xué)者發(fā)現(xiàn),隨著小數(shù)部分位數(shù)的增加,0~9這10個數(shù)字出現(xiàn)的頻率趨于穩(wěn)定,接近相同.

(1)從的小數(shù)部分隨機取出一個數(shù)字,估計數(shù)字是6的概率為________;(2)某校進行校園文化建設(shè),擬從以上4位科學(xué)家的畫像中隨機選用2幅,求其中有一幅是祖沖之的概率.(用畫樹狀圖或列表方法求解)2、如圖,在?ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF(1)求證:?ABCD是菱形;(2)若AB=5,AC=6,求?ABCD的面積.3、如圖,在四邊形中,,,..(1)求的長;(2)求四邊形的面積.4、解方程:2(x-3)=3x(x-3).5、解方程:(1)x(x-3)-5(3-x)=0(2)6、如圖,在平行四邊形ABCD中,BE⊥AD,BF⊥CD,垂足分別為E,F(xiàn),且AE=CF.(1)求證:平行四邊形ABCD是菱形;(2)若DB=10,AB=13,求平行四邊形ABCD的面積.-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意直接對一元二次方程配方,然后把常數(shù)項移到等號右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項移到等號的右邊;把二次項的系數(shù)化為1;等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).2、A【解析】【分析】由三角形底邊BC是定長,所以當(dāng)△BCF的高最大時,△BCF的面積最大,即當(dāng)FC⊥BC時,三角形有最大面積.【詳解】解:在菱形ABCD中,BC=CD=AB=4又∵將△CDE沿CE折疊,得到△CFE,∴FC=CD=4由此,△BCF的底邊BC是定長,所以當(dāng)△BCF的高最大時,△BCF的面積最大,即當(dāng)FC⊥BC時,三角形有最大面積∴△BCF面積的最大值是故選:A.【考點】本題考查菱形的性質(zhì)和折疊的性質(zhì),掌握三角形面積的計算方法和菱形的性質(zhì)正確推理計算是解題關(guān)鍵.3、A【解析】【分析】根據(jù)平行四邊形、矩形、菱形、正方形的性質(zhì),對各個選項逐個分析,即可得到答案.【詳解】∵平行四邊形、矩形、菱形、正方形的對角線互相平分∴選項A正確;∵菱形的對角線不相等∴選項B錯誤;∵矩形的對角線不相互垂直∴選項C和D錯誤;故選:A.【考點】本題考查了平行四邊形、矩形、菱形、正方形的知識;解題的關(guān)鍵是熟練掌握平行四邊形、矩形、菱形、正方形的性質(zhì),從而完成求解.4、A【解析】【分析】作M關(guān)于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,求出CP、BP,根據(jù)勾股定理求出BC長,證出MP+NP=QN=BC,即可得出答案.【詳解】解:作M關(guān)于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,則P是AC中點,∵四邊形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M為BC中點,∴Q為AB中點,∵N為CD中點,四邊形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四邊形BQNC是平行四邊形,∴PQ∥AD,而點Q是AB的中點,故PQ是△ABD的中位線,即點P是BD的中點,同理可得,PM是△ABC的中位線,故點P是AC的中點,即點P是菱形ABCD對角線的交點,∵四邊形ABCD是菱形,則△BPC為直角三角形,,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故選:A.【考點】本題考查了軸對稱-最短路線問題,平行四邊形的性質(zhì)和判定,菱形的性質(zhì),勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)軸對稱找出P的位置.5、D【解析】【分析】過點E作EF⊥x軸于點F,由直角三角形的性質(zhì)求出EF長和OF長即可.【詳解】解:過點E作EF⊥x軸于點F,∵四邊形OABC為菱形,∠AOC=60°,∴∠AOE=∠AOC=30°,OB⊥AC,∠FAE=60°,∴∠AEF=30°∵A(8,0),∴AO=8,∴AE=AO=×8=4,∴AF=AE=2,,∴OF=AO?AF=8?2=6,∴.故選:D【考點】本題考查了菱形的性質(zhì)、勾股定理及含30°直角三角形的性質(zhì),正確作出輔助線是解題的關(guān)鍵.6、B【解析】【分析】根據(jù)一元二次方程的根與系數(shù)的關(guān)系可得x1+x2=3,x1x2=1,再把代數(shù)式x12+x22化為,再整體代入求值即可.【詳解】解:根據(jù)根與系數(shù)的關(guān)系得x1+x2=3,x1x2=1,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×1=7.故選:B.【考點】本題考查的是一元二次方程的根與系數(shù)的關(guān)系,熟練的利用根與系數(shù)的關(guān)系求解代數(shù)式的值是解本題的關(guān)鍵.7、C【解析】【分析】由一元二次方程定義得出二次項系數(shù)k≠0;由方程有兩個不相等的實數(shù)根,得出“△>0”,解這兩個不等式即可得到k的取值范圍.【詳解】解:由題可得:,解得:且;故選:C.【考點】本題考查了一元二次方程的定義和根的判別式,涉及到了解不等式等內(nèi)容,解決本題的關(guān)鍵是能讀懂題意并牢記一元二次方程的概念和根的判別式的內(nèi)容,能正確求出不等式(組)的解集等,本題對學(xué)生的計算能力有一定的要求.二、多選題1、ABD【解析】【分析】A正確,利用判別式判斷即可.B正確,證明Δ>0,即可判斷.C錯誤,c=0時,結(jié)論不成立.D正確,利用求根公式,判斷即可.【詳解】解:A、當(dāng)x=2是,4a+2b+c=0,故x=2是方程的根;則方程ax2+bx+c=0必有實數(shù)根,A正確,B、∵Δ=b2?4ac=(3a+2)2?4a(2a+2)=9a2+12a+4?8a2?8a=a2+4a+4=(a+2)2,∵a>0,∴Δ>0,∴方程有兩個不相等的實數(shù)根,故B正確.C、∵若c是方程ax2+bx+c=0的一個根,∴ac2+bc+c=0,∴c(ac+b+1)=0,∴c=0或ac+b+1=0,故C錯誤.D、∵t是一元二次方程ax2+bx+c=0的根∴t=,∴b2?4ac=(2at+b)2,故D正確,故答案為:A,B,D.【考點】本題考查命題與定理,一元二次方程的根的判別式等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)解決問題,屬于中考常考題型.2、ACD【解析】【分析】根據(jù)矩形的性質(zhì)得到:矩形的對角線相等且互相平分,根據(jù)矩形的判定:對角線相等且互相平分且相等的四邊形是矩形,進行逐一判斷即可.【詳解】A.矩形的對角線互相平分,且相等,但不一定互相垂直,說法錯誤,本選項符合題意;B.矩形的對角線相等且互相平分,說法正確,本選項不符合題意;C.對角線相等的四邊形不一定為矩形,例如等腰梯形對角線相等,但不是矩形,說法錯誤,本選項符合題意;D.對角線互相平分的四邊形為平行四邊形,不一定為矩形,說法錯誤,本選項符合題意;故選ACD.【考點】考查矩形的判定與性質(zhì),熟練掌握矩形的判定定理與性質(zhì)定理是解決問題的關(guān)鍵.3、AD【解析】【分析】根據(jù)矩形的性質(zhì)依次進行判斷即可.【詳解】解:A、矩形的對角線相等,正確;B、矩形的內(nèi)角和為360°,選項錯誤;C、矩形的鄰邊不一定相等,選項錯誤;D、矩形的對角相等均為90°,所以對角互補,正確;故選:AD.【考點】題目主要考查矩形的性質(zhì),理解矩形的性質(zhì)是解題關(guān)鍵.三、填空題1、3【解析】【分析】由四邊形ABCD是菱形,OB=4,根據(jù)菱形的性質(zhì)可得BD=8,在根據(jù)菱形的面積等于兩條對角線乘積的一半求得AC=6,再根據(jù)直角三角形斜邊的中線等于斜邊的一半即可求得OH的長.【詳解】∵四邊形ABCD是菱形,OB=4,∴OA=OC,BD=2OB=8;∵S菱形ABCD=24,∴AC=6;∵AH⊥BC,OA=OC,∴OH=AC=3.故答案為3.【考點】本題考查了菱形的性質(zhì)及直角三角形斜邊的中線等于斜邊的一半的性質(zhì),根據(jù)菱形的面積公式(菱形的面積等于兩條對角線乘積的一半)求得AC=6是解題的關(guān)鍵.2、2【解析】【詳解】【分析】根據(jù)一元二次方程的定義以及一元二次方程的解的定義列出關(guān)于m的方程,通過解關(guān)于m的方程求得m的值即可.【詳解】∵關(guān)于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的解的定義.解答該題時需注意二次項系數(shù)a≠0這一條件.3、或##或【解析】【分析】連接,根據(jù)題意可得,當(dāng)∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當(dāng)∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點的位置是解題的關(guān)鍵.4、【解析】【分析】由折疊的性質(zhì),得DE=EF,AD=AF,然后求出AF=AD=10,則求出FC的長度,再根據(jù)勾股定理建立方程,即可求出答案.【詳解】解:∵四邊形是長方形,由折疊的性質(zhì),,∵,又,在中,;故答案為:.【考點】本題考查了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②矩形的性質(zhì),勾股定理求解.5、【解析】【分析】根據(jù)當(dāng)、、三點共線,距離最小,求出BE和BD即可得出答案.【詳解】如圖當(dāng)、、三點共線,距離最小,∵,為的中點,∴,,,故答案為:.【考點】本題考查了直角三角形斜邊的中線等于斜邊的一半,勾股定理,兩點間的距離線段最短,判斷出距離最短的情況是解題關(guān)鍵.6、cm【解析】【分析】設(shè)較短的直角邊長是xcm,較長的就是(x+5)cm,根據(jù)面積是7cm,求出直角邊長,根據(jù)勾股定理求出斜邊長.【詳解】解:設(shè)這個直角三角形的較短直角邊長為xcm,則較長直角邊長為(x+5)cm,根據(jù)題意,得,所以,解得,,因為直角三角形的邊長為正數(shù),所以不符合題意,舍去,所以x=2,當(dāng)x=2時,x+5=7,由勾股定理,得直角三角形的斜邊長為==cm.故答案為:cm.【考點】本題考查了勾股定理,一元二次方程的應(yīng)用,關(guān)鍵是知道三角形面積公式以及直角三角形中勾股定理的應(yīng)用.7、①③【解析】【分析】根據(jù)平行四邊形的判定和菱形的判定解答即可.【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,故①正確;∵∠BAC=90°,四邊形AEDF是平行四邊形,∴四邊形AEDF是矩形,故②錯誤;∵AD平分∠BAC,四邊形AEDF是平行四邊形,∴四邊形AEDF是菱形,故③正確;∵AB=AC,四邊形AEDF是平行四邊形,不能得出AE=AF,故四邊形AEDF不一定是菱形,故④錯誤;故答案為:①③.【考點】此題考查菱形的判定,關(guān)鍵是就平行四邊形的判定和菱形的判定解答.8、1【解析】【分析】把方程的根代入原方程得到,解得k的值,再根據(jù)一元二次方程成立滿足的條件進行取舍即可.【詳解】∵方程是一元二次方程,∴k+2≠0,即k≠-2;又0是該方程的一個根,∴,解得,,,由于k≠-2,所以,k=1.故答案為:1.【考點】本題考查了一元二次方程的解.解此類題時,要擅于觀察已知的是哪些條件,從而有針對性的選擇解題方法.同時要注意一元二次方程成立必須滿足的條件,這是容易忽略的地方.9、x2﹣6x+6=0【解析】【分析】根據(jù)根與系數(shù)的關(guān)系分別求出b和c即可.【詳解】解:根據(jù)題意得2×3=c,1+5=﹣b,解得b=﹣6,c=6,所以正確的一元二次方程為x2﹣6x+6=0.故答案為:x2﹣6x+6=0.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關(guān)系,若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關(guān)系式:,.10、或2【解析】【分析】根據(jù)新定義的運算得到,整理并求解一元二次方程即可.【詳解】解:根據(jù)新定義內(nèi)容可得:,整理可得,解得,,故答案為:或2.【考點】本題考查新定義運算、解一元二次方程,根據(jù)題意理解新定義運算是解題的關(guān)鍵.四、解答題1、(1);(2)見解析,【解析】【分析】(1)這個事件中有10種等可能性,其中是6的有一種可能性,根據(jù)概率公式計算即可;(2)畫出樹狀圖計算即可.【詳解】(1)∵這個事件中有10種等可能性,其中是6的有一種可能性,∴數(shù)字是6的概率為,故答案為:;(2)解:畫樹狀圖如圖所示:∵共有12種等可能的結(jié)果,其中有一幅是祖沖之的畫像有6種情況.∴(其中有一幅是祖沖之).【考點】本題考查了概率公式計算,畫樹狀圖或列表法計算概率,熟練掌握概率計算公式,準(zhǔn)確畫出樹狀圖或列表是解題的關(guān)鍵.2、(1)證明見解析;(2)S平行四邊形ABCD=24【解析】【分析】(1)利用全等三角形的性質(zhì)證明AB=AD即可解決問題;(2)連接BD交AC于O,利用勾股定理求出對角線的長即可解決問題.【詳解】(1)∵四邊形ABCD是平行四邊形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD,∴AB=AD,∴四邊形ABCD是菱形;(2)連接BD交AC于O,∵四邊形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四邊形ABCD=×AC×BD=24.【考點】本題考查了菱形的判定和性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)等知識,熟練掌握相關(guān)的性質(zhì)與定理、正確添加輔助線是解題的關(guān)鍵.3、(1);(2)【解析】【分析】(1)作DM⊥BC,AN⊥DM垂足分別為M、N,易知四邊形MNAB是矩形,分別在Rt△ADN中求出DN,利用含60°的直角三角形求CD即可;(2)由(1)可知,四邊形的面積就是△DCM與梯形ADMB的面積和.【詳解】解:(1)如圖作DM⊥BC,AN⊥DM垂足分別為M、N.∵∠B=∠NMB=∠MNA=90°,∴四邊形MNAB是矩形,∴MN=AB=5,AN=BM,∠BAN=90°,∵∠C+∠B+∠ADC+∠BAD=360°,∠C=60°,∠B=∠ADC=90°,∴∠DAN=∠BAD﹣∠BA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論