解析卷-北師大版9年級數(shù)學上冊期中試題及參考答案詳解_第1頁
解析卷-北師大版9年級數(shù)學上冊期中試題及參考答案詳解_第2頁
解析卷-北師大版9年級數(shù)學上冊期中試題及參考答案詳解_第3頁
解析卷-北師大版9年級數(shù)學上冊期中試題及參考答案詳解_第4頁
解析卷-北師大版9年級數(shù)學上冊期中試題及參考答案詳解_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數(shù)學上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、若實數(shù)滿足,則的值是()A.1 B.-3或1 C.-3 D.-1或32、如圖,在矩形ABCD中,點F在AD上,點E在BC上,把矩形沿EF折疊后,使點D恰好落

在BC邊上的G點處,若矩形面積為且∠AFG=60°,GE=2BG,則折痕EF的長為()A.1 B. C.2 D.3、已知(x2+y2+1)(x2+y2﹣3)=5,則x2+y2的值為()A.0 B.4 C.4或﹣2 D.﹣24、如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC?CF=2HE.其中正確的結(jié)論有(

)A.1個 B.2個 C.3個 D.4個5、直角三角形的面積為,斜邊上的中線為,則這個三角形周長為(

)A. B.C. D.6、對于一元二次方程,下列說法:①若,則;②若方程有兩個不相等的實根,則方程必有兩個不相等的實根;③若是方程的一個根,則一定有成立;④若是一元二次方程的根,則.其中正確的有(

)A.個 B.個 C.個 D.個7、如圖,矩形ABCD中,AD=2,AB=,對角線AC上有一點G(異于A,C),連接DG,將△AGD繞點A逆時針旋轉(zhuǎn)60°得到△AEF,則BF的長為(

)A. B.2 C. D.2二、多選題(3小題,每小題2分,共計6分)1、下列命題中真命題有(

)A.四個角相等的四邊形是矩形 B.對角線垂直的四邊形是菱形C.對角線相等的平行四邊形是矩形 D.四邊相等的四邊形是正方形2、下列方程沒有實數(shù)根的是(

)A. B. C. D.3、如果關于的一元二次方程有兩個相等的實根,那么對于以,,為邊的三角形,下面的判斷不正確的是(

)A.以為斜邊的直角三角形 B.以為斜邊的直角三角形C.以為底邊的等腰三角形 D.以為底邊的等腰三角形第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、如圖,在長方形中,,在上存在一點、沿直線把折疊,使點恰好落在邊上的點處,若,那么的長為________.2、如果一個直角三角形斜邊上的中線與斜邊所成的銳角為角,那么這個直角三角形的較小的內(nèi)角是________.3、若m,n是關于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.4、已知x=2是關于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個根,則k的值為_____.5、如圖,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中點,則CD=_____.6、在解一元二次方程x2+bx+c=0時,小明看錯了一次項系數(shù)b,得到的解為x1=2,x2=3;小剛看錯了常數(shù)項c,得到的解為x1=1,x2=5.請你寫出正確的一元二次方程________.7、若m,n是一元二次方程的兩個實數(shù)根,則的值為___________.8、已知菱形的邊長為,兩條對角線的長度的比為3:4,則兩條對角線的長度分別是_____________.9、如圖,在菱形中,,點E在邊上,將沿直線翻折180°,得到,點B的對應點是點若,,則的長是__________.10、如果關于的一元二次方程的一個解是,那么代數(shù)式的值是___________.四、解答題(6小題,每小題10分,共計60分)1、已知,是一元二次方程的兩個實數(shù)根.(1)求k的取值范圍;(2)是否存在實數(shù)k,使得等式成立?如果存在,請求出k的值,如果不存在,請說明理由.2、已知方程的一個根比另一個根小4,求這兩個根和的值.3、如圖1,正方形ABCD中,AB=5,點E為BC邊上一動點,連接AE,以AE為邊,在線段AE右側(cè)作正方形,連接CF、DF.設.(當點E與點B重合時,x的值為0),.小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整:(1)通過取點、畫圖、測量、觀察、計算,得到了x與y1、y2的幾組對應值;x0123455.004.123.614.125.0001.412.834.245.657.07(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點,并畫出函數(shù)y1,y2的圖象;(3)結(jié)合函數(shù)圖象2,解決問題:當△CDF為等腰三角形時,BE的長度約為cm.4、解關于y的方程:by2﹣1=y(tǒng)2+2.5、某旅游園區(qū)對團隊入園購票規(guī)定:如團隊人數(shù)不超過人,那么這個團隊需交200元入園費;若團隊人數(shù)超過人,則這個團隊除了需交200元入園費外,超過部分游客還要按每人元交入園費,下表是兩個旅游團隊人數(shù)和入園繳費情況:旅游團隊名稱團隊人數(shù)(人)入園費用(元)旅游團隊180350旅游團隊245200根據(jù)上表的數(shù)據(jù),求某旅游園區(qū)對團隊入園購票規(guī)定的人是多少?6、解方程:(1)2x2-5x-3=0;(2)x2-2x=2x-1;(3)x2+3x+2=0-參考答案-一、單選題1、A【解析】【分析】設x2-3x=y.將y代入原方程得到關于y的一元二次方程y2+2y-3=0即可,解這個方程求出y的值,然后利用根的判別式檢驗即可.【詳解】設x2-3x=y.將y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3.當y=1時,x2-3x=1,△=b2-4ac=(-3)2-4×1×(-1)=9+4=13>0,有兩個不相等的實數(shù)根,當y=-3時,x2-3x=-3,△=b2-4ac=(-3)2-4×1×3=9=12<0,無解.故y=1,即x2-3x=1.故選A.【考點】本題考查了換元法解一元二次方程及一元二次方程根的判別式,解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質(zhì)是轉(zhuǎn)化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理.2、A【解析】【分析】由折疊的性質(zhì)得,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE,結(jié)合∠AFG=60°可得∠GFE=60°,即△GEF為等邊三角形,在Rt△GHE中,解直角三角形得到GE=2EC,DC=EC,再由GE=2BG,結(jié)合矩形面積為,求出EC,最后根據(jù)EF=GE=2EC即可解答.【詳解】解:由折疊的性質(zhì)可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE,∵∠AFG=60°∴∠GFE+∠DFE=180°-∠AFG=120°∴∠GFE=60°∵AF∥GE,∠AFG=60°∴∠FGE=∠AFG=60°∴△GEF為等邊三角形∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°∴∠HGE=30°在Rt△GHE中,∠HGE=30°∴GE=2HE=2CE.∴GH==HE=CE∴GE=2BG,∴BC=BG+GE+EC=4EC∵矩形ABCD的面積為4.∴4EC·EC=.∴EC=,∵GE=2HE=2CE.∴EF=GE=1故答案為A.【考點】本題考查了矩形的翻折變換、等邊三角形的判定及性質(zhì)、含30度角的直角三角形的性質(zhì)、勾股定理等知識,根據(jù)邊角關系和解直角三角形找出確定BC=4EC,DC=EC是解答本題的關鍵.3、B【解析】【分析】設x2+y2=z,則原方程換元為z2﹣2z﹣8=0,可得z1=4,z2=﹣2,由此即可求解.【詳解】解:設x2+y2=z,則原方程換元為(z+1)(z﹣3)=5,整理得:z2﹣2z﹣8=0,∴(z﹣4)(z+2)=0,解得:z1=4,z2=﹣2,即x2+y2=4或x2+y2=﹣2,∵x2+y2≥0,∴x2+y2=﹣2不合題意,舍去,∴x2+y2=4.故選:B.【考點】本題考查了換元法解一元二次方程,正確掌握換元法是解決本題的關鍵,注意代數(shù)式x2+y2本身的取值范圍不能忘.4、D【解析】【分析】①根據(jù)角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AE=AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據(jù)全等三角形對應邊相等可得BE=DH,再根據(jù)等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據(jù)平角等于180°求出∠CED=67.5°,從而判斷出①正確;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據(jù)等角對等邊可得OE=OD=OH,判斷出②正確;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據(jù)全等三角形對應邊相等可得BH=HF,判斷出③正確;④根據(jù)全等三角形對應邊相等可得DF=HE,然后根據(jù)HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確.【詳解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正確;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正確;綜上所述,結(jié)論正確的是①②③④共4個.故選:D.【考點】本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),角平分線的定義,等腰三角形的判定與性質(zhì),熟記各性質(zhì)并仔細分析題目條件,根據(jù)相等的度數(shù)求出相等的角,從而得到三角形全等的條件或判斷出等腰三角形是解題的關鍵,也是本題的難點.5、D【解析】【分析】根據(jù)直角三角形的性質(zhì)求出斜邊長,根據(jù)勾股定理、完全平方公式計算即可.【詳解】解:設直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴∴這個三角形周長為:,故選D.【考點】本題考查的是勾股定理的應用,直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.6、C【解析】【分析】按照方程的解的含義、一元二次方程的實數(shù)根與判別式的關系、等式的性質(zhì)、一元二次方程的求根公式等對各選項分別討論,可得答案.【詳解】解:①若a+b+c=0,則x=1是方程ax2+bx+c=0的解,由一元二次方程的實數(shù)根與判別式的關系可知:Δ=b2-4ac≥0,故①正確;②方程ax2+c=0有兩個不相等的實根,∴Δ=0-4ac>0,∴-4ac>0則方程ax2+bx+c=0的判別式Δ=b2-4ac>0,∴方程ax2+bx+c=0必有兩個不相等的實根,故②正確;③∵c是方程ax2+bx+c=0的一個根,則ac2+bc+c=0,∴c(ac+b+1)=0,若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正確;④若x0是一元二次方程ax2+bx+c=0的根,則由求根公式可得:x0=,∴2ax0+b=±,∴b2-4ac=(2ax0+b)2,故④正確.故正確的有①②④,故選:C.【考點】本題考查一元二次方程根的判斷,根據(jù)方程形式,判斷根的情況是求解本題的關鍵.7、A【解析】【分析】過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,△AGD繞點A逆時針旋轉(zhuǎn)60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四邊形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,F(xiàn)H=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【詳解】解:如圖,過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,∵△AGD繞點A逆時針旋轉(zhuǎn)60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四邊形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,F(xiàn)H=AF=1由勾股定理得AH=在Rt△BFH中,F(xiàn)H=1,BH=AH+AB=2由勾股定理得BF=故BF的長.故選:A【考點】本題考查了圖形的旋轉(zhuǎn),矩形的性質(zhì),含30度角的直角三角形的性質(zhì),勾股定理等知識,解決此題的關鍵在于作出正確的輔助線.二、多選題1、AC【解析】【分析】真命題就是正確的命題,即如果命題的題設成立,那么結(jié)論一定成立.因此,分別根據(jù)矩形、菱形、正方形的判定作出判斷得即可.【詳解】解:A、根據(jù)四邊形的內(nèi)角和是360度得出,四個角相等的四邊形即四個內(nèi)角是直角,故此四邊形是矩形,故此命題是真命題,符合題意;B、只有對角線互相平分且垂直的四邊形是菱形,故此命題不是真命題,不符合題意;C、對角線互相平分且相等的四邊形是矩形,故此命題不是真命題,符合題意;D、四邊相等的四邊形是菱形,故此命題不是真命題,不符合題意.故選AC.【考點】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質(zhì)定理.2、AD【解析】【分析】判斷上述四個方程的根的情況,只要看根的判別式△的值的符號就可以了.【詳解】解:、△,方程沒有實數(shù)根,故本選項符合題意;、△,方程有兩個不相等的實數(shù)根,故本選不符合題意;、△,方程有兩個相等的實數(shù)根,故本選項不符合題意;、△,方程沒有實數(shù)根,故本選項符合題意.故選:AD.【考點】本題考查了根的判別式,解題的關鍵是掌握一元二次方程的根與△有如下關系:(1)△方程有兩個不相等的實數(shù)根;(2)△方程有兩個相等的實數(shù)根;(3)△方程沒有實數(shù)根.3、BCD【解析】【分析】根據(jù)判別式的意義得到,再整理得到,然后根據(jù)勾股定理的逆定理進行判斷.【詳解】解:根據(jù)題意得,整理得,所以三角形是以為斜邊的直角三角形.故選:BCD.【考點】本題考查了一元二次方程的根的判別式△、勾股定理的逆定理,解題的關鍵是掌握當△,方程有兩個不相等的實數(shù)根;當△,方程有兩個相等的實數(shù)根;當△,方程沒有實數(shù)根.三、填空題1、【解析】【分析】由折疊的性質(zhì),得DE=EF,AD=AF,然后求出AF=AD=10,則求出FC的長度,再根據(jù)勾股定理建立方程,即可求出答案.【詳解】解:∵四邊形是長方形,由折疊的性質(zhì),,∵,又,在中,;故答案為:.【考點】本題考查了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質(zhì),勾股定理求解.2、25【解析】【分析】由直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),證明得到,再利用外角性質(zhì)求出,再得到,從而得解.【詳解】如圖所示,∵是斜邊上的中線,∴,∴,∵斜邊上的中線與斜邊所成的銳角為,即,∴,解得:,另一個銳角,∴這個直角三角形的較小內(nèi)角是.故答案為:.【考點】本題考查了直角三角形的性質(zhì)和外角的性質(zhì),比較基礎.3、21【解析】【分析】先根據(jù)根與系數(shù)的關系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.4、﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因為k≠0,所以k的值為﹣3.故答案為﹣3.【考點】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.5、3【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵∠ACB=90°,D為AB的中點,∴CD=AB=×6=3.故答案為3.【考點】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),熟記性質(zhì)是解題的關鍵.6、x2﹣6x+6=0【解析】【分析】根據(jù)根與系數(shù)的關系分別求出b和c即可.【詳解】解:根據(jù)題意得2×3=c,1+5=﹣b,解得b=﹣6,c=6,所以正確的一元二次方程為x2﹣6x+6=0.故答案為:x2﹣6x+6=0.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關系,若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關系式:,.7、3【解析】【分析】先根據(jù)一元二次方程的解的定義得到m2+3m-1=0,則3m-1=-m2,根據(jù)根與系數(shù)的關系得出m+n=-3,再將其代入整理后的代數(shù)式計算即可.【詳解】解:∵m是一元二次方程x2+3x-1=0的根,∴m2+3m-1=0,∴3m-1=-m2,∵m、n是一元二次方程x2+3x-1=0的兩個根,∴m+n=-3,∴,故答案為:3.【考點】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程()的兩根時,,.也考查了一元二次方程的解.8、,【解析】【分析】如圖BD:AC=3:4,AB=10cm,設BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【詳解】如圖BD:AC=3:4,AB=10cm,設BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,則兩條對角線的長度分別是12cm,16cm.故答案為:12cm,16cm.【考點】本題考查菱形的對角線問題,掌握菱形的性質(zhì),利用對角線之間的關系,和勾股定理構造方程是解題關鍵.9、【解析】【分析】由題意易得,,則有,進而根據(jù)折疊的性質(zhì)可得,,然后根據(jù)三角形內(nèi)角和可得,最后根據(jù)等腰直角三角形的性質(zhì)可求解.【詳解】解:∵四邊形是菱形,∴,∵,∴,是等邊三角形,即,∵,∴,由折疊的性質(zhì)可得,,,在中,由三角形內(nèi)角和可得,∴,即,∴是等腰直角三角形,∴;故答案為.【考點】本題主要考查菱形的性質(zhì)、折疊的性質(zhì)及等腰直角三角形的性質(zhì)與判定,熟練掌握菱形的性質(zhì)、折疊的性質(zhì)及等腰直角三角形的性質(zhì)與判定是解題的關鍵.10、【解析】【分析】根據(jù)關于的一元二次方程的一個解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關于的一元二次方程的一個解是,,,.故答案為:2020.【考點】本題考查一元二次方程的解,解答本題的關鍵是明確一元二次方程的解的含義.四、解答題1、(1);(2)【解析】【分析】(1)根據(jù)方程的系數(shù)結(jié)合≥0,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍;(2)根據(jù)根與系數(shù)的關系可得出x1+x2=2,x1x2=k+2,結(jié)合,即可得出關于k的方程,解之即可得出k值,再結(jié)合(1)即可得出結(jié)論.【詳解】解:(1)∵一元二次方程有兩個實數(shù)根,∴解得;(2)由一元二次方程根與系數(shù)關系,∵,∴即,解得.又由(1)知:,∴.【考點】本題考查了根與系數(shù)的關系以及根的判別式,解題的關鍵是:(1)牢記“當△≥0時,方程有兩個實數(shù)根”;(2)根據(jù)根與系數(shù)的關系結(jié)合,找出關于k的方程.2、,,【解析】【分析】設兩根為x1和x2,根據(jù)根與系數(shù)的關系得x1+x2,x1·x2,由|x2-x1|=4兩邊平方,得(x1+x2)2-4x1·x2=16,代入解得m,此時方程為x2+4x=0,解出兩根.【詳解】解:x2+4x-2m=0設兩根為x1和x2,則△=16+8m>0,且x1+x2=-4,x1·x2=-2m由于|x2-x1|=4兩邊平方得x12-2x1·x2+x22=16即(x1+x2)2-4x1·x2=16所以16+8m=16解得:m=0此時方程為x2+4x=0,解得x1=0,x2=?4.【考點】本題考查一元二次方程的根與系數(shù)的關系,解題的關鍵是靈活利用一元二次方程根與系數(shù)的關系,以及完全平方公式進行變形,求出兩根.3、(1)見解析;(2)見解析;(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論