蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專(zhuān)題真題經(jīng)典及解析_第1頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專(zhuān)題真題經(jīng)典及解析_第2頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專(zhuān)題真題經(jīng)典及解析_第3頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專(zhuān)題真題經(jīng)典及解析_第4頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專(zhuān)題真題經(jīng)典及解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專(zhuān)題真題經(jīng)典及解析一、解答題1.小明在學(xué)習(xí)過(guò)程中,對(duì)教材中的一個(gè)有趣問(wèn)題做如下探究:(習(xí)題回顧)已知:如圖1,在中,,是角平分線(xiàn),是高,、相交于點(diǎn).求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線(xiàn)交的延長(zhǎng)線(xiàn)于點(diǎn),其反向延長(zhǎng)線(xiàn)與邊的延長(zhǎng)線(xiàn)交于點(diǎn),則與還相等嗎?說(shuō)明理由;(探究延伸)如圖3,在中,上存在一點(diǎn),使得,的平分線(xiàn)交于點(diǎn).的外角的平分線(xiàn)所在直線(xiàn)與的延長(zhǎng)線(xiàn)交于點(diǎn).直接寫(xiě)出與的數(shù)量關(guān)系.2.如圖,在中,與的角平分線(xiàn)交于點(diǎn).(1)若,則;(2)若,則;(3)若,與的角平分線(xiàn)交于點(diǎn),的平分線(xiàn)與的平分線(xiàn)交于點(diǎn),,的平分線(xiàn)與的平分線(xiàn)交于點(diǎn),則.3.如圖,△ABC中,∠ABC的角平分線(xiàn)與∠ACB的外角∠ACD的平分線(xiàn)交于A1.(1)當(dāng)∠A為70°時(shí),∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分線(xiàn)與∠ACB的外角∠ACD的平分線(xiàn)∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分線(xiàn)與∠A1CD的角平分線(xiàn)交于A2,∠A2BC與A2CD的平分線(xiàn)交于A3,如此繼續(xù)下去可得A4、…、An,請(qǐng)寫(xiě)出∠A與∠An的數(shù)量關(guān)系______;(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線(xiàn)及外角∠DCE的平分線(xiàn)所在的直線(xiàn)構(gòu)成的角,若∠A+∠D=230度,則∠F=______.(4)如圖3,若E為BA延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線(xiàn)交于Q,當(dāng)E滑動(dòng)時(shí)有下面兩個(gè)結(jié)論:①∠Q+∠A1的值為定值;②∠Q-∠A1的值為定值.其中有且只有一個(gè)是正確的,請(qǐng)寫(xiě)出正確的結(jié)論,并求出其值.4.如果三角形的兩個(gè)內(nèi)角與滿(mǎn)足,那么我們稱(chēng)這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線(xiàn),求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說(shuō)法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫(xiě)所有正確說(shuō)法的序號(hào));(3)如圖2,,為直線(xiàn)上兩點(diǎn),點(diǎn)在直線(xiàn)外,且.若是直線(xiàn)上一點(diǎn),且是“準(zhǔn)互余三角形”,請(qǐng)直接寫(xiě)出的度數(shù).5.已知,,點(diǎn)為射線(xiàn)上一點(diǎn).(1)如圖1,寫(xiě)出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點(diǎn)在延長(zhǎng)線(xiàn)上時(shí),求證:;(3)如圖3,平分,交于點(diǎn),交于點(diǎn),且:,,,求的度數(shù).6.如圖1,直線(xiàn)MN與直線(xiàn)AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).(1)試判斷直線(xiàn)AB與直線(xiàn)CD的位置關(guān)系,并說(shuō)明理由;(2)如圖2,∠BEF與∠EFD的角平分線(xiàn)交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF//GH.(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問(wèn)∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值若變化,說(shuō)明理由.7.[原題](1)已知直線(xiàn),點(diǎn)P為平行線(xiàn)AB,CD之間的一點(diǎn),如圖①,若,BE平分,DE平分,則__________.[探究](2)如圖②,,當(dāng)點(diǎn)P在直線(xiàn)AB的上方時(shí).若,和的平分線(xiàn)相交于點(diǎn),與的平分線(xiàn)相交于點(diǎn),與的平分線(xiàn)相交于點(diǎn)……以此類(lèi)推,求的度數(shù).[變式](3)如圖③,,的平分線(xiàn)的反向延長(zhǎng)線(xiàn)和的補(bǔ)角的平分線(xiàn)相交于點(diǎn)E,試猜想與的數(shù)量關(guān)系,并說(shuō)明理由.8.我們將內(nèi)角互為對(duì)頂角的兩個(gè)三角形稱(chēng)為“對(duì)頂三角形.例如,在圖1中,的內(nèi)角與的內(nèi)角互為對(duì)頂角,則與為對(duì)頂三角形,根據(jù)三角形內(nèi)角和定理知“對(duì)頂三角形”有如下性質(zhì):.(1)(性質(zhì)理解)如圖2,在“對(duì)頂三角形”與中,,,求證:;(2)(性質(zhì)應(yīng)用)如圖3,在中,點(diǎn)D、E分別是邊、上的點(diǎn),,若比大20°,求的度數(shù);(3)(拓展提高)如圖4,已知,是的角平分線(xiàn),且和的平分線(xiàn)和相交于點(diǎn)P,設(shè),求的度數(shù)(用表示).9.(概念認(rèn)識(shí))如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線(xiàn)”.其中,BD是“鄰AB三分線(xiàn)”,BE是“鄰BC三分線(xiàn)”.(問(wèn)題解決)(1)如圖②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分線(xiàn)BD交AC于點(diǎn)D,求∠BDC的度數(shù);(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰BC三分線(xiàn)和∠ACB鄰BC三分線(xiàn),且∠BPC=140°,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線(xiàn)所在的直線(xiàn)與∠ACD的三分線(xiàn)所在的直線(xiàn)交于點(diǎn)P.若∠A=m°(),∠B=54°,直接寫(xiě)出∠BPC的度數(shù).(用含m的代數(shù)式表示)10.已知:直線(xiàn)l分別交AB、CD與E、F兩點(diǎn),且AB∥CD.(1)說(shuō)明:∠1=∠2;(2)如圖2,點(diǎn)M、N在AB、CD之間,且在直線(xiàn)l左側(cè),若∠EMN+∠FNM=260°,①求:∠AEM+∠CFN的度數(shù);②如圖3,若EP平分∠AEM,F(xiàn)P平分∠CFN,求∠P的度數(shù);(3)如圖4,∠2=80°,點(diǎn)G在射線(xiàn)EB上,點(diǎn)H在AB上方的直線(xiàn)l上,點(diǎn)Q是平面內(nèi)一點(diǎn),連接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接寫(xiě)出∠GQH的度數(shù).【參考答案】一、解答題1.[習(xí)題回顧]證明見(jiàn)解析;[變式思考]相等,證明見(jiàn)解析;[探究延伸]∠M+∠CFE=90°,證明見(jiàn)解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可解析:[習(xí)題回顧]證明見(jiàn)解析;[變式思考]相等,證明見(jiàn)解析;[探究延伸]∠M+∠CFE=90°,證明見(jiàn)解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可證明;[變式思考]根據(jù)角平分線(xiàn)的定義和對(duì)頂角相等可得∠CAE=∠DAF、再根據(jù)直角三角形的性質(zhì)和等角的余角相等即可得出=;[探究延伸]根據(jù)角平分線(xiàn)的定義可得∠EAN=90°,根據(jù)直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據(jù)三角形外角的性質(zhì)可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習(xí)題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線(xiàn),∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線(xiàn),∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點(diǎn)共線(xiàn)

AE、AN為角平分線(xiàn),∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點(diǎn)睛】本題考查三角形的外角的性質(zhì),直角三角形兩銳角互余,角平分線(xiàn)的有關(guān)證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和,理解并掌握是解決此題的關(guān)鍵.2.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線(xiàn)的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線(xiàn)的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平分線(xiàn),用n°的代數(shù)式表示出∠OBC與∠OCB的和,再根據(jù)三角形的內(nèi)角和定理求出∠BOC的度數(shù);(3)根據(jù)規(guī)律直接計(jì)算即可.【詳解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵點(diǎn)O是∠AB故答案為:110°;C與∠ACB的角平分線(xiàn)的交點(diǎn),∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分別是∠ABC與∠ACB的角平分線(xiàn),∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案為:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分線(xiàn)與∠ACO的平分線(xiàn)交于點(diǎn)O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180°+n°,故答案為:×90°+n°.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理,角平分線(xiàn)定義的應(yīng)用,注意:三角形的內(nèi)角和等于180°.3.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線(xiàn)的定義可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線(xiàn)的定義可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分別平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出規(guī)律;(3)先根據(jù)四邊形內(nèi)角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根據(jù)內(nèi)角與外角的關(guān)系和角平分線(xiàn)的定義得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,從而得出結(jié)論;(4)依然要用三角形的外角性質(zhì)求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形內(nèi)角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的關(guān)系.【詳解】解:(1)當(dāng)∠A為70°時(shí),∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分線(xiàn)與∠ACB的外角∠ACD的平分線(xiàn),∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=35°;故答案為:A,70,35;(2)∵A1B、A1C分別平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠An,故答案為:∠A=2∠An.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案為:25°.(4)①∠Q+∠A1的值為定值正確.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分線(xiàn)與∠ACB的外角∠ACD的平分線(xiàn)∴∠A1=∠A1CD-∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分線(xiàn),∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC,∴∠Q+∠A1=180°.【點(diǎn)睛】本題主要考查三角形的外角性質(zhì)和角平分線(xiàn)的定義的運(yùn)用,根據(jù)推導(dǎo)過(guò)程對(duì)題目的結(jié)果進(jìn)行規(guī)律總結(jié)對(duì)解題比較重要.4.(1)見(jiàn)解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線(xiàn),證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見(jiàn)解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線(xiàn),證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角形”的定義,分類(lèi)討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準(zhǔn)互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線(xiàn),∴,∴,∴是“準(zhǔn)互余三角形”;(2)①∵,∴,∴是“準(zhǔn)互余三角形”,故①正確;②∵,,∴,∴不是“準(zhǔn)互余三角形”,故②錯(cuò)誤;③設(shè)三角形的三個(gè)內(nèi)角分別為,且,∵三角形是“準(zhǔn)互余三角形”,∴或,∴,∴,∴“準(zhǔn)互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當(dāng)2∠A+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當(dāng)∠A+2∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當(dāng)2∠APB+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當(dāng)2∠A+∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數(shù)是10°或20°或40°或110°時(shí),是“準(zhǔn)互余三角形”.【點(diǎn)睛】本題是三角形綜合題,考查了三角形內(nèi)角和定理,三角形的外角的性質(zhì),解題關(guān)鍵是理解題意,根據(jù)三角形內(nèi)角和定理和三角形的外角的性質(zhì),結(jié)合新定義進(jìn)行求解.5.(1),證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【分析】(1)過(guò)E作EH∥AB,根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H解析:(1),證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【分析】(1)過(guò)E作EH∥AB,根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H,根據(jù)∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,進(jìn)而得到∠EAF=∠AED+∠EDG;(3)設(shè)∠EAI=∠BAI=α,則∠CHE=∠BAE=2α,進(jìn)而得出∠EDI=α+10°,∠CDI=α+5°,再根據(jù)∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根據(jù)三角形內(nèi)角和定理,得到∠EKD的度數(shù).【詳解】解:(1)∠AED=∠EAF+∠EDG.理由:如圖1,過(guò)E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)證明:如圖2,設(shè)CD與AE交于點(diǎn)H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可設(shè)∠EAI=∠BAI=α,則∠BAE=2α,如圖3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【點(diǎn)睛】本題主要考查了平行線(xiàn)的性質(zhì),三角形外角性質(zhì)以及三角形內(nèi)角和定理的綜合應(yīng)用,解決問(wèn)題的關(guān)鍵是作輔助線(xiàn)構(gòu)造內(nèi)錯(cuò)角,運(yùn)用三角形外角性質(zhì)進(jìn)行計(jì)算求解.解題時(shí)注意:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.6.(1)見(jiàn)詳解;(2)見(jiàn)詳解;(3)∠HPQ的大小不發(fā)生變化,理由見(jiàn)詳解.【分析】(1)根據(jù)同旁?xún)?nèi)角互補(bǔ),兩條直線(xiàn)平行即可判斷直線(xiàn)AB與直線(xiàn)CD平行;(2)先根據(jù)兩條直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ),再根解析:(1)見(jiàn)詳解;(2)見(jiàn)詳解;(3)∠HPQ的大小不發(fā)生變化,理由見(jiàn)詳解.【分析】(1)根據(jù)同旁?xún)?nèi)角互補(bǔ),兩條直線(xiàn)平行即可判斷直線(xiàn)AB與直線(xiàn)CD平行;(2)先根據(jù)兩條直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ),再根據(jù)∠BEF與∠EFD的角平分線(xiàn)交于點(diǎn)P,可得∠EPF=90°,進(jìn)而證明PF∥GH;(3)根據(jù)角平分線(xiàn)定義,及角的和差計(jì)算即可求得∠HPQ的度數(shù),進(jìn)而即可得到結(jié)論.【詳解】解:(1)AB∥CD,理由如下:∵∠1與∠2互補(bǔ),∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF與∠EFD的角平分線(xiàn)交于點(diǎn)P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°?∠PKG=90°?2∠HPK.∴∠EPK=180°?∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠HPK.∴∠HPQ=∠QPK?∠HPK=45°.∴∠HPQ的大小不發(fā)生變化.【點(diǎn)睛】本題考查了平行線(xiàn)的判定和性質(zhì)、余角和補(bǔ)角,解決本題的關(guān)鍵是綜合運(yùn)用角平分線(xiàn)的定義、平行線(xiàn)的性質(zhì)、余角和補(bǔ)角.7.(1);(2);(3),理由見(jiàn)解析【分析】(1)過(guò)作,依據(jù)平行線(xiàn)的性質(zhì),即可得到,依據(jù)角平分線(xiàn)即可得出的度數(shù);(2)依據(jù)平行線(xiàn)的性質(zhì)以及三角形外角性質(zhì),求得,,,以此類(lèi)推的度數(shù)為;(3)過(guò)作解析:(1);(2);(3),理由見(jiàn)解析【分析】(1)過(guò)作,依據(jù)平行線(xiàn)的性質(zhì),即可得到,依據(jù)角平分線(xiàn)即可得出的度數(shù);(2)依據(jù)平行線(xiàn)的性質(zhì)以及三角形外角性質(zhì),求得,,,以此類(lèi)推的度數(shù)為;(3)過(guò)作,進(jìn)而得出,再根據(jù)平行線(xiàn)的性質(zhì)以及三角形外角性質(zhì),即可得到【詳解】解:(1)如圖1,過(guò)作,而,,,,,又,,平分,平分,,,,故答案為:;(2)如圖2,和的平分線(xiàn)交于點(diǎn),,,,,,與的角平分線(xiàn)交于點(diǎn),,,,,,同理可得,,以此類(lèi)推,的度數(shù)為.(3).理由如下:如圖3,過(guò)作,而,,,,,又的角平分線(xiàn)的反向延長(zhǎng)線(xiàn)和的補(bǔ)角的角平分線(xiàn)交于點(diǎn),,,,,,.【點(diǎn)睛】本題考查了平行線(xiàn)性質(zhì)以及三角形外角性質(zhì)的應(yīng)用,在解答此題時(shí)要注意作出輔助線(xiàn),構(gòu)造出平行線(xiàn)求解.8.(1)見(jiàn)詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對(duì)頂三角形”的性質(zhì)得,從而得,進(jìn)而即可得到結(jié)論;(2)設(shè)=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=解析:(1)見(jiàn)詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對(duì)頂三角形”的性質(zhì)得,從而得,進(jìn)而即可得到結(jié)論;(2)設(shè)=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=y-20°,根據(jù)三角形內(nèi)角和定理,列出方程,即可求解;(3)設(shè)∠ABE=∠CBE=x,∠ACD=∠BCD=y,可得x+y=90°-,結(jié)合∠CEP+∠ACD=∠CDP+∠P,即可得到結(jié)論.【詳解】(1)證明:∵在“對(duì)頂三角形”與中,∴,∵,∴,∵,∴,又∵∴;(2)∵比大20°,+=+,∴設(shè)=x,=y,則=x+20°,=y-20°,∵,∴∠ABC+∠ACB=180°-∠A=180°-=x+y,∴∠ABC+∠DCB=∠ABC+∠ACB-=x+y-x-20°=y-20°,∵∠ABC+∠DCB+=180°,∴y-20°+y=180°,解得:y=100°,∴=100°;(3)∵,是的角平分線(xiàn),∴設(shè)∠ABE=∠CBE=x,∠ACD=∠BCD=y,∴2x+2y+=180°,即:x+y=90°-,∵和的平分線(xiàn)和相交于點(diǎn)P,∴∠CEP=(180°-2y-x),∠CDP=(180°-2x-y),∵∠CEP+∠ACD=∠CDP+∠P,∴∠P=(180°-2y-x)+y-(180°-2x-y)=x+y=45°-,即:∠P=45°-.【點(diǎn)睛】本題主要考查角平分線(xiàn)的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì),熟練掌握“對(duì)頂三角形”的性質(zhì),是解題的關(guān)鍵.9.(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線(xiàn)有兩種情況,畫(huà)圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線(xiàn)和鄰解析:(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線(xiàn)有兩種情況,畫(huà)圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線(xiàn)和鄰三分線(xiàn),且可得,進(jìn)而可求

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論