202X呂梁市中考數(shù)學(xué)期末幾何綜合壓軸題模擬匯編_第1頁(yè)
202X呂梁市中考數(shù)學(xué)期末幾何綜合壓軸題模擬匯編_第2頁(yè)
202X呂梁市中考數(shù)學(xué)期末幾何綜合壓軸題模擬匯編_第3頁(yè)
202X呂梁市中考數(shù)學(xué)期末幾何綜合壓軸題模擬匯編_第4頁(yè)
202X呂梁市中考數(shù)學(xué)期末幾何綜合壓軸題模擬匯編_第5頁(yè)
已閱讀5頁(yè),還剩54頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一、中考幾何壓軸題1.(1)問(wèn)題發(fā)現(xiàn)如圖1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,點(diǎn)E是線段AC上一動(dòng)點(diǎn),連接DE.填空:①則的值為_(kāi)_____;②∠EAD的度數(shù)為_(kāi)______.(2)類比探究如圖2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,點(diǎn)E是線段AC上一動(dòng)點(diǎn),連接DE.請(qǐng)求出的值及∠EAD的度數(shù);(3)拓展延伸如圖3,在(2)的條件下,取線段DE的中點(diǎn)M,連接AM、BM,若BC=4,則當(dāng)△ABM是直角三角形時(shí),求線段AD的長(zhǎng).2.某數(shù)學(xué)課外活動(dòng)小組在學(xué)習(xí)了勾股定理之后,針對(duì)圖1中所示的“由直角三角形三邊向外側(cè)作多邊形,它們的面積之間的關(guān)系問(wèn)題”進(jìn)行了以下探究:類比探究:(1)如圖2,在中,為斜邊,分別以為直徑,向外側(cè)作半圓,則面積之間的關(guān)系式為_(kāi)____________;推廣驗(yàn)證:(2)如圖3,在中,為斜邊,分別以為邊向外側(cè)作,,滿足,則(1)中所得關(guān)系式是否仍然成立?若成立,請(qǐng)證明你的結(jié)論;若不成立,請(qǐng)說(shuō)明理由;拓展應(yīng)用:(3)如圖4,在五邊形中,,點(diǎn)在上,,求五邊形的面積.3.(1)問(wèn)題發(fā)現(xiàn)如圖1,△ABC與△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,直線BD,CE交于點(diǎn)F,直線BD,AC交于點(diǎn)G.則線段BD和CE的數(shù)量關(guān)系是,位置關(guān)系是;(2)類比探究如圖2,在△ABC和△ADE中,∠ABC=∠ADE=α,∠ACB=∠AED=β,直線BD,CE交于點(diǎn)F,AC與BD相交于點(diǎn)G.若AB=kAC,試判斷線段BD和CE的數(shù)量關(guān)系以及直線BD和CE相交所成的較小角的度數(shù),并說(shuō)明理由;(3)拓展延伸如圖3,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(3.0),點(diǎn)N為y軸上一動(dòng)點(diǎn),連接MN.將線段MN繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90得到線段MP,連接NP,OP.請(qǐng)直接寫出線段OP長(zhǎng)度的最小值及此時(shí)點(diǎn)N的坐標(biāo).4.將拋物線y=ax2的圖像(如圖1)繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90度后可得新的拋物線圖像(如圖2),記為C:y2=x.(概念與理解)將拋物線y1=4x2和y2=x2按上述方法操作后可得新的拋物線圖像,記為:C1:_____________;C2:____________.(猜想與證明)在平面直角坐標(biāo)系中,點(diǎn)M(x,0)在x軸正半軸上,過(guò)點(diǎn)M作平行于y軸的直線,分別交拋物線C1于點(diǎn)A、B,交拋物線C2于點(diǎn)C、D,如圖3所示.(1)填空:當(dāng)x=1時(shí),=______;當(dāng)x=2時(shí),=_______;(2)猜想:對(duì)任意x(x>0)上述結(jié)論是否仍然成立?若成立,請(qǐng)證明你的猜想;若不成立,請(qǐng)說(shuō)明理由.(探究與應(yīng)用)①利用上面的結(jié)論,可得△AOB與△COD面積比為;②若△AOB和△COD中有一個(gè)是直角三角形時(shí),求△COD與△AOB面積之差;(聯(lián)想與拓展)若拋物線C3:y2=mx、C4:y2=nx(0<m<n),M(k,0)在x軸正半軸上,如圖所示,過(guò)點(diǎn)M作平行于y軸的直線,分別交拋物線C3于點(diǎn)A、B,交拋物線C4于點(diǎn)C、D.過(guò)點(diǎn)A作x軸的平行線交拋物線C4于點(diǎn)E,過(guò)點(diǎn)D作x軸的平行線交拋物線C3于點(diǎn)F.對(duì)于x軸上任取一點(diǎn)P,均有△PAE與△PDF面積的比值1:3,請(qǐng)直接寫出m和n之間滿足的等量關(guān)系是______.5.在矩形ABCD中,(k為常數(shù)),點(diǎn)P是對(duì)角線BD上一動(dòng)點(diǎn)(不與B,D重合),將射線PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°與射線CB交于點(diǎn)E,連接AE.(1)特例發(fā)現(xiàn):如圖1,當(dāng)k=1時(shí),將點(diǎn)P移動(dòng)到對(duì)角線交點(diǎn)處,可發(fā)現(xiàn)點(diǎn)E與點(diǎn)B重合,則=,∠AEP=;當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),∠AEP的大小(填“改變”或“不變”);(2)類比探究:如圖2,若k≠1時(shí),當(dāng)k的值確定時(shí),請(qǐng)?zhí)骄俊螦EP的大小是否會(huì)隨著點(diǎn)P的移動(dòng)而發(fā)生變化,并說(shuō)明理由;(3)拓展應(yīng)用:當(dāng)k≠1時(shí),如圖2,連接PC,若PC⊥BD,,PC=2,求AP的長(zhǎng).6.綜合與實(shí)踐(問(wèn)題背景)如圖1,矩形中,.點(diǎn)E為邊上一點(diǎn),沿直線將矩形折疊,使點(diǎn)C落在邊的點(diǎn)處.(問(wèn)題解決)(1)填空:的長(zhǎng)為_(kāi)_____.(2)如圖2,將沿線段向右平移,使點(diǎn)與點(diǎn)B重合,得到與交于點(diǎn)F,與交于點(diǎn)G.求的長(zhǎng);(拓展探究)(3)在圖2中,連接,則四邊形是平行四邊形嗎?若是,請(qǐng)予以證明;若不是,請(qǐng)說(shuō)明理由.7.綜合與實(shí)踐:利用矩形的折疊開(kāi)展數(shù)學(xué)活動(dòng),探究體會(huì)圖形在軸對(duì)稱,旋轉(zhuǎn)等變換過(guò)程中的變化,及其蘊(yùn)含的數(shù)學(xué)思想和方法.動(dòng)手操作:如圖①,矩形紙片ABCD的邊AB=2,將矩形紙片ABCD對(duì)折,使點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)C重合,折痕為EF,然后展開(kāi),EF與AC交于點(diǎn)H;如圖②,將矩形ABCD沿過(guò)點(diǎn)A的直線折疊,使點(diǎn)B落在對(duì)角線AC上,且點(diǎn)B與點(diǎn)H重合,展開(kāi)圖形,折痕為AG,連接GH;若在圖①中連接BH,得到如圖③,點(diǎn)M是線段BH上的動(dòng)點(diǎn),點(diǎn)N是線段AH上的動(dòng)點(diǎn),連接AM,MN,且∠AMN=∠ABH;若在圖②中連接BH,交折痕AG于點(diǎn)Q,隱去其它線段,得到如圖④.解決問(wèn)題:(1)在圖②中,∠ACB=,BC=,=,與△ABG相似的三角形有個(gè);(2)在圖②中,AH2=AE·(從圖②中選擇一條線段填在空白處),并證明你的結(jié)論;(3)在圖③中,△ABH為三角形,設(shè)BM為x,則NH=(用含x的式子表示);拓展延伸:(4)在圖④中,將△ABQ繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)α(0°≤α≤180°),得到△A′BQ′,連接DQ′,則DQ′的最小值為,當(dāng)tan∠CBQ′=時(shí),△DBQ′的面積最大值為.8.如圖(1),在矩形ABCD中,AD=nAB,點(diǎn)M,P分別在邊AB,AD上(均不與端點(diǎn)重合),且AP=nAM,以AP和AM為鄰邊作矩形AMNP,連接AN,CN.(問(wèn)題發(fā)現(xiàn))(1)如圖(2),當(dāng)n=1時(shí),BM與PD的數(shù)量關(guān)系為,CN與PD的數(shù)量關(guān)系為.(類比探究)(2)如圖(3),當(dāng)n=2時(shí),矩形AMNP繞點(diǎn)A順時(shí)針旋轉(zhuǎn),連接PD,則CN與PD之間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)就圖(3)給出證明;若變化,請(qǐng)寫出數(shù)量關(guān)系,并就圖(3)說(shuō)明理由.(拓展延伸)(3)在(2)的條件下,已知AD=4,AP=2,當(dāng)矩形AMVP旋轉(zhuǎn)至C,N,M三點(diǎn)共線時(shí),請(qǐng)直接寫出線段CN的長(zhǎng)9.(發(fā)現(xiàn)問(wèn)題)(1)如圖,已知和均為等邊三角形,在上,在上,易得線段和的數(shù)量關(guān)系是.(2)將圖中的繞點(diǎn)旋轉(zhuǎn)到圖的位置,直線和直線交于點(diǎn)①判斷線段和的數(shù)量關(guān)系,并證明你的結(jié)論.②圖中的度數(shù)是.(3)(探究拓展)如圖3,若和均為等腰直角三角形,,,,直線和直線交于點(diǎn),分別寫出的度數(shù),線段、之間的數(shù)量關(guān)系.10.△ABC中,∠BAC=α°,AB=AC,D是BC上一點(diǎn),將AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α°,得到線段AE,連接BE.(1)(特例感知)如圖1,若α=90,則BD+BE與AB的數(shù)量關(guān)系是.(2)(類比探究)如圖2,若α=120,試探究BD+BE與AB的數(shù)量關(guān)系,并證明.(3)(拓展延伸)如圖3,若α=120,AB=AC=4,BD=,Q為BA延長(zhǎng)線上的一點(diǎn),將QD繞點(diǎn)Q順時(shí)針旋轉(zhuǎn)120°,得到線段QE,DE⊥BC,求AQ的長(zhǎng).11.定義:如圖1,點(diǎn)M、N把線段AB分割成AM、MN和BN,若以AM、MN、BN為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M、N是線段AB的勾股點(diǎn).已知點(diǎn)M、N是線段AB的勾股點(diǎn),若AM=1,MN=2,則BN=.(1)(類比探究)如圖2,DE是△ABC的中位線,M、N是AB邊的勾股點(diǎn)(AM<MN<NB),連接CM、CN分別交DE于點(diǎn)G、H.求證:G、H是線段DE的勾股點(diǎn).(2)(知識(shí)遷移)如圖3,C,D是線段AB的勾股點(diǎn),以CD為直徑畫⊙O,P在⊙O上,AC=CP,連結(jié)PA,PB,若∠A=2∠B,求∠B的度數(shù).(3)(拓展應(yīng)用)如圖4,點(diǎn)P(a,b)是反比例函數(shù)(x>0)上的動(dòng)點(diǎn),直線與坐標(biāo)軸分別交于A、B兩點(diǎn),過(guò)點(diǎn)P分別向x、y軸作垂線,垂足為C、D,且交線段AB于E、F.證明:E、F是線段AB的勾股點(diǎn).12.(1)問(wèn)題發(fā)現(xiàn):如圖1,在△ABC中和△DCE中,,,,點(diǎn)D是BC的垂線AF上任意一點(diǎn).填空:①的值為;②∠ABE的度數(shù)為.(2)類比探究:如圖2,在△ABC中和△DCE中,,,點(diǎn)D是BC的垂線AF上任意一點(diǎn).請(qǐng)判斷的值及∠ABE的度數(shù),并說(shuō)明理由;(3)拓展延伸:在(2)的條件下,若,,請(qǐng)直接寫出BE的長(zhǎng).13.(探究證明)(1)某班數(shù)學(xué)課題學(xué)習(xí)小組對(duì)矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究,提出下列問(wèn)題,請(qǐng)你給出證明:如圖①,在矩形ABCD中,EF⊥GH,EF分別交AD、BC于點(diǎn)E、F,GH分別交AB、DC于點(diǎn)G、H,求證:;(結(jié)論應(yīng)用)(2)如圖②,將矩形ABCD沿EF折疊,使得點(diǎn)B和點(diǎn)D重合,若AB=2,BC=3.求折痕EF的長(zhǎng);(拓展運(yùn)用)(3)如圖③,將矩形ABCD沿EF折疊.使得點(diǎn)D落在AB邊上的點(diǎn)G處,點(diǎn)C落在點(diǎn)P處,得到四邊形EFPG,若AB=2,BC=3,EF=,請(qǐng)求BP的長(zhǎng).14.問(wèn)題提出(1)如圖(1),在等邊三角形ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連接AM,以AM為邊作等邊三角形AMN,連接CN,則∠ACN=°.類比探究(2)如圖(2),在等邊三角形ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其他條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.拓展延伸(3)如圖(3),在等腰三角形ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連接AM,以AM為邊作等腰三角形AMN,使AM=MN,連接CN.添加一個(gè)條件,使得∠ABC=∠ACN仍成立,寫出你所添加的條件,并說(shuō)明理由.15.折紙是一種許多人熟悉的活動(dòng).近些年,經(jīng)過(guò)許多人的努力,已經(jīng)找到了多種將正方形折紙的一邊三等分的精確折法,下面探討其中的一種折法:(綜合與實(shí)踐)操作一:如圖1,將正方形紙片ABCD對(duì)折,使點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)C重合,再將正方形紙片ABCD展開(kāi),得到折痕MN;操作二:如圖2,將正方形紙片ABCD的右上角沿MC折疊,得到點(diǎn)D的對(duì)應(yīng)的點(diǎn)為D′;操作三:如圖3,將正方形紙片ABCD的左上角沿MD′折疊再展開(kāi),折痕MD′與邊AB交于點(diǎn)P;(問(wèn)題解決)請(qǐng)?jiān)趫D3中解決下列問(wèn)題:(1)求證:BP=D′P;(2)AP:BP=;(拓展探究)(3)在圖3的基礎(chǔ)上,將正方形紙片ABCD的左下角沿CD′折疊再展開(kāi),折痕CD′與邊AB交于點(diǎn)Q.再將正方形紙片ABCD過(guò)點(diǎn)D′折疊,使點(diǎn)A落在AD邊上,點(diǎn)B落在BC邊上,然后再將正方形紙片ABCD展開(kāi),折痕EF與邊AD交于點(diǎn)E,與邊BC交于點(diǎn)F,如圖4.試探究:點(diǎn)Q與點(diǎn)E分別是邊AB,AD的幾等分點(diǎn)?請(qǐng)說(shuō)明理由.16.綜合與實(shí)踐問(wèn)題情境:△ABC中,∠BAC=90°,AB=AC,AD⊥BC于點(diǎn)D,點(diǎn)E是射線AD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合)將線段AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到線段AF,連接CF交線段AB于點(diǎn)G,交AD于點(diǎn)H、連接EG.特例分析:(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)D重合時(shí),“智敏”小組提出如下問(wèn)題,請(qǐng)你解答:①求證:AF=CD;②用等式表示線段CG與EG之間的數(shù)量關(guān)系為:_______;拓展探究:(2)如圖2,當(dāng)點(diǎn)E在線段AD的延長(zhǎng)線上,且DE=AD時(shí),“博?!毙〗M發(fā)現(xiàn)CF=2EG.請(qǐng)你證明;(3)如圖3,當(dāng)點(diǎn)E在線段AD的延長(zhǎng)線上,且AE=AB時(shí),的值為_(kāi)______;推廣應(yīng)用:(4)當(dāng)點(diǎn)E在射線AD上運(yùn)動(dòng)時(shí),,則的值為_(kāi)_____用含m.n的式子表示).17.(1)問(wèn)題情境:如圖1,已知等腰直角中,,,是上的一點(diǎn),且,過(guò)作于,取中點(diǎn),連接,則的長(zhǎng)為_(kāi)______(請(qǐng)直接寫出答案)小明采用如下的做法:延長(zhǎng)到,使,連接,為中點(diǎn),為的中點(diǎn),是的中位線……請(qǐng)你根據(jù)小明的思路完成上面填空;(2)遷移應(yīng)用:將圖1中的繞點(diǎn)作順時(shí)針旋轉(zhuǎn),當(dāng)時(shí),試探究、、的數(shù)量關(guān)系,并證明你的結(jié)論.(3)拓展延伸:在旋轉(zhuǎn)的過(guò)程中,當(dāng)、、三點(diǎn)共線時(shí),直接寫出線段的長(zhǎng).18.如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D是AB邊上的動(dòng)點(diǎn),DE⊥BC于點(diǎn)E,連接AE,CD,點(diǎn)F,G,H分別是AE,CD,AC的中點(diǎn).(1)觀察猜想:△FGH的形狀是(2)探究論證:把△BDE繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)到如圖所示的位置,(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.(3)拓展延伸:把△BDE繞點(diǎn)B在平面內(nèi)自由旋轉(zhuǎn),若BC=6,BE=2,請(qǐng)直接寫出△FGH周長(zhǎng)的取值范圍.19.石家莊某學(xué)校數(shù)學(xué)興趣小組利用機(jī)器人開(kāi)展數(shù)學(xué)活動(dòng),在相距150個(gè)單位長(zhǎng)度的直線跑道AB上,機(jī)器人甲從端點(diǎn)A出發(fā),勻速往返于端點(diǎn)A、B之間,機(jī)器人乙同時(shí)從端點(diǎn)B出發(fā),以大于甲的速度勻速往返于端點(diǎn)B、A之間.他們到達(dá)端點(diǎn)后立即轉(zhuǎn)身折返,用時(shí)忽略不計(jì),興趣小組成員探究這兩個(gè)機(jī)器人迎面相遇的情況,這里的“迎面相遇”包括面對(duì)面相遇、在端點(diǎn)處相遇這兩種.(觀察)①觀察圖1,若這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為30個(gè)單位長(zhǎng)度,則他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為個(gè)單位長(zhǎng)度.②若這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為35個(gè)單位長(zhǎng)度,則他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為個(gè)單位長(zhǎng)度.(發(fā)現(xiàn))設(shè)這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為x個(gè)單位長(zhǎng)度,他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為y個(gè)單位長(zhǎng)度,興趣小組成員發(fā)現(xiàn)了y與x的函數(shù)關(guān)系,并畫出了部分函數(shù)圖象(線段OP,不包括點(diǎn)O,如圖2所示)①a=;②分別求出各部分圖象對(duì)應(yīng)的函數(shù)解析式,并在圖2中補(bǔ)全函數(shù)圖象.(拓展)設(shè)這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為x個(gè)單位長(zhǎng)度,他們第三次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為y個(gè)單位長(zhǎng)度,若這兩個(gè)機(jī)器人在第三次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離y不超過(guò)60個(gè)單位長(zhǎng)度,則他們第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離x的取值范圍是.(直接寫出結(jié)果)20.(問(wèn)題探究)課堂上老師提出了這樣的問(wèn)題:“如圖①,在中,,點(diǎn)是邊上的一點(diǎn),,求的長(zhǎng)”.某同學(xué)做了如下的思考:如圖②,過(guò)點(diǎn)作,交的延長(zhǎng)線于點(diǎn),進(jìn)而求解,請(qǐng)回答下列問(wèn)題:(1)___________度;(2)求的長(zhǎng).(拓展應(yīng)用)如圖③,在四邊形中,,對(duì)角線相交于點(diǎn),且,,則的長(zhǎng)為_(kāi)____________.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、中考幾何壓軸題1.(1)1,;(2),∠EAD=90°;(3)線段AD的長(zhǎng)為(2+6).【分析】(1)由題意可得Rt△ABC和Rt△DBE均為等腰直角三角形,通過(guò)證明△ABD≌△BCE,可得AD=EC,∠DAB=解析:(1)1,;(2),∠EAD=90°;(3)線段AD的長(zhǎng)為(2+6).【分析】(1)由題意可得Rt△ABC和Rt△DBE均為等腰直角三角形,通過(guò)證明△ABD≌△BCE,可得AD=EC,∠DAB=∠BCE=45°,從而可得到結(jié)論;(2)通過(guò)證明△ABD∽△BCE,可得的值,∠BAD=∠ACB=60°,即可求∠EAD的度數(shù);(3)由直角三角形的性質(zhì)可證AM=BM=DE,即可求DE=4,由勾股定理可求CE的長(zhǎng),從而可求出AD的長(zhǎng).【詳解】(1)∵∠ABC=∠DBE=90°,∠ACB=∠BED=45°,∴∠CBE=∠ABD,∠CAB=45°∴AB=BC,BE=DE,∴△BCE≌△BAD∴AD=CE,∠BAD=∠BCE=45°∴=1,∠EAD=∠CAB+∠BAD=90°故答案為:1,(2),∠EAD=90°理由如下:∵∠ABC=∠DBE=90°,∠ACB=∠BED=60°∴∠ABD=∠EBC,∠BAC=∠BDE=30°∴在Rt△ABC中,tan∠ACB==tan60°=在Rt△DBE中,tan∠BED==tan60°=∴=又∵∠ABD=∠EBC∴△ABD∽△BCE∴==,∠BAD=∠ACB=60°∵∠BAC=30°∴∠EAD=∠BAD+∠BAC=60°+30°=90°,(3)如圖,由(2)知:==,∠EAD=90°∴AD=CE,在Rt△ABC中,∠BAC=30°,BC=4,∴AC=8,AB=4,∵∠EAD=∠EBD=90°,且點(diǎn)M是DE的中點(diǎn),∴AM=BM=DE,∵△ABM為直角三角形,∴AM2+BM2=AB2=(4)2=48,∴AM=BM=2,∴DE=4,設(shè)EC=x,則AD=x,AE=8-xRt△ADE中,AE2+AD2=DE2∴(8-x)2+(x)2=(4)2,解之得:x=2+2(負(fù)值舍去),∴EC=2+2,∴AD=CE=2+6,∴線段AD的長(zhǎng)為(2+6),【點(diǎn)睛】本題是相似形綜合題,考查了相似三角形的判定和性質(zhì),勾股定理,等腰三角形的性質(zhì),直角三角形的性質(zhì)等知識(shí).2.(1)S1+S2=S3,(2)成立,證明見(jiàn)解析,(3)【分析】(1)分別寫出三個(gè)半圓的面積,再利用勾股定理轉(zhuǎn)化即可.(2)先證明三個(gè)三角形相似,再計(jì)算出三個(gè)三角形的面積,即可得出結(jié)論.(3)解析:(1)S1+S2=S3,(2)成立,證明見(jiàn)解析,(3)【分析】(1)分別寫出三個(gè)半圓的面積,再利用勾股定理轉(zhuǎn)化即可.(2)先證明三個(gè)三角形相似,再計(jì)算出三個(gè)三角形的面積,即可得出結(jié)論.(3)先添加輔助線,在第二問(wèn)的思路下,先證明三個(gè)三角形相似,得出三個(gè)三角形的面積關(guān)系,再利用30°、45°的直角三角形計(jì)算出相應(yīng)的邊,計(jì)算出五邊形的面積即可.【詳解】解:(1)設(shè)AB=b,AC=a,BC=c.則有:所以在Rt△ABC中,有a2+b2=c2,且故答案為:S1+S2=S3(2)∵∴設(shè)AB、AC、BC邊上的高分別為h1,h2,h3∴,設(shè)AB=b,AC=a,BC=c則∴又在Rt△ABC中,有a2+b2=c2∴故依然成立(3)連接PD、BD,作AF⊥BP,EM⊥PD∵∠ABP=30°,∠BAP=105°∴∠APB=45°在Rt△ABF中,AF=AB=,BF=3,在Rt△AFP中,AF=PF=,則AP=,∵∠A=∠E,∴△ABP∽△EDP∴∠EPD=45°∠EDP=30°∴∠BPD=90°又PE=∴PM=EM=1,MD=則PD=1+∴=所以五邊形的面積為:【點(diǎn)睛】本題考查勾股定理、與勾股定理有關(guān)的圖形問(wèn)題、相似三角形.是中考的常考知識(shí).3.(1)BD=CE,BD⊥CE,理由見(jiàn)詳解;(2)AB=kAC,180°-α-β;(3)N(0,3),OP的最小值為3【分析】(1)先證明△ABD≌△ACE,從而得BD=CE,∠ABD=∠ACE解析:(1)BD=CE,BD⊥CE,理由見(jiàn)詳解;(2)AB=kAC,180°-α-β;(3)N(0,3),OP的最小值為3【分析】(1)先證明△ABD≌△ACE,從而得BD=CE,∠ABD=∠ACE,結(jié)合∠AGB=∠FGC,即可得到結(jié)論;(2)先證明ABCADE,從而得,結(jié)合∠BAD=∠CAE,可得BADCAE,進(jìn)而即可得到結(jié)論;(3)把OPM繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到(與N重合),則,,(3,3),,進(jìn)而即可求解.【詳解】解:(1)BD=CE,BD⊥CE,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∵∠BAD=∠BAC?∠DAC,∠CAE=∠DAE?∠DAC∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠AGB=∠FGC,∴∠CFG=∠BAG=90°,即BD⊥CE,故答案是:BD=CE,BD⊥CE;(2)∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴ABCADE,∴,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∴BADCAE,∴∠ABD=∠ACE,又∵∠AGB=∠FGC,∴∠BFC=∠BAC=180°-∠ABC-∠ACB=180°-α-β,∴AB=kAC,直線BD和CE相交所成的較小角的度數(shù)為:180°-α-β;(3)由題意得:MN=MP,∠NMP=90°,把OPM繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到(與N重合),則,,∵點(diǎn)M的坐標(biāo)為(3,0),∴(3,3)∵OPM,∴,即線段OP長(zhǎng)度最小時(shí),的長(zhǎng)度最小,∴當(dāng)⊥y軸時(shí),的長(zhǎng)度最小,此時(shí)(0,3),∴N(0,3),OP的最小值為3.【點(diǎn)睛】本題主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),通過(guò)旋轉(zhuǎn)變換,構(gòu)造相似三角形或全等三角形,是解題的關(guān)鍵.4.【概念與理解】,;【猜想與證明】(1),;(2)成立,證明見(jiàn)解析;【探究與應(yīng)用】①;②△COD與△AOB面積之差為或;【聯(lián)想與拓展】n3=9m3.【分析】【概念與理解】:根據(jù)題意信息即可得出答案解析:【概念與理解】,;【猜想與證明】(1),;(2)成立,證明見(jiàn)解析;【探究與應(yīng)用】①;②△COD與△AOB面積之差為或;【聯(lián)想與拓展】n3=9m3.【分析】【概念與理解】:根據(jù)題意信息即可得出答案;【猜想與證明】:(1)當(dāng)x=1時(shí),求出A,B,C,D的坐標(biāo)進(jìn)而得出AB,CD即可得出答案;當(dāng)x=2時(shí),求出A,B,C,D的坐標(biāo)進(jìn)而得出AB,CD即可得出答案;(2)任意x(x>0),求出A,B,C,D的坐標(biāo)進(jìn)而得出AB,CD即可得出答案;【探究與應(yīng)用】:①根據(jù)已知條件表示出△AOB與△COD面積即可得出答案;②設(shè)M(x,0)(x>0),根據(jù)已知條件可得出,分兩種情況當(dāng)△AOB是直角三角形時(shí)解得,當(dāng)△COD是直角三角形時(shí),解得,把代入即可;【聯(lián)想與拓展】:根據(jù)題意求出AEDF的坐標(biāo)然后表示出面積再利用△PAE與△PDF面積的比值1:3,即可得出關(guān)系式;【詳解】【概念與理解】∵y1=4x2∴由題意可得C1:∵y2=x2∴由題意可得C2:故答案為:C1:,C2:;【猜想與證明】(1)當(dāng)x=1時(shí),∵點(diǎn)A、B在拋物線C1上∴令x=1,則∴A,B∴AB=1∵點(diǎn)C、D在拋物線C2上∴令x=1,則∴C,D∴CD=2∴=當(dāng)x=2時(shí),∵點(diǎn)A、B在拋物線C1上∴令x=2,則∴A,B∴AB=∵點(diǎn)C、D在拋物線C2上∴令x=2,則∴C,D∴CD=∴=(2)對(duì)任意x(x>0)上述結(jié)論仍然成立理由如下:對(duì)任意x(x>0),∴A,B∴AB=對(duì)任意x(x>0),∴C,D∴CD=∴=【探究與應(yīng)用】①連接OA,OB,OC,OD∴故答案為:②設(shè)M(x,0)(x>0),∵M(jìn)(x,0)∴∴AB=∵M(jìn)(x,0),∴∴CD=∵∴當(dāng)△AOB是直角三角形時(shí),由題意可知OA=OB∴△△AOB為等腰直角三角形∴OM=AM∴解得:∴當(dāng)△COD是直角三角形時(shí),由題意可知OD=OC∴△△COD為等腰直角三角形∴OM=CM∴解得:∴綜上所述:△COD與△AOB面積之差為或【聯(lián)想與拓展】∵M(jìn)(k,0)且點(diǎn)A、B在拋物線C3上∴令x=k,則∴A∵AE∥x軸,且交C4于點(diǎn)E∴E∵M(jìn)(k,0)且點(diǎn)C、D在拋物線C4上∴令x=k,則∴D∵DF∥x軸,且交C3于點(diǎn)F∴F∵AE∥x軸,且交C4于點(diǎn)E∴△PEA的高=∵DF∥x軸,且交C3于點(diǎn)F∴△PDF的高=∴∵△PAE與△PDF面積的比值1:3∴∴∴故答案為:【點(diǎn)睛】本題考出了拋物線性質(zhì)的綜合運(yùn)用以及旋轉(zhuǎn)等知識(shí),由特殊到一般的數(shù)學(xué)思想的運(yùn)用,等腰直角三角形的性質(zhì)的運(yùn)用,三角形的面積公式的運(yùn)用,軸對(duì)稱的性質(zhì)的運(yùn)用,在解答本題時(shí)運(yùn)用兩個(gè)拋物線上的點(diǎn)的特征不變建立方程求解是關(guān)鍵.5.(1)1,45°,不變;(2)∠AEP的大小不變,理由見(jiàn)解析;(3).【分析】(1)當(dāng)點(diǎn)P為對(duì)角線交點(diǎn)時(shí),根據(jù)正方形的性質(zhì)可得出結(jié)論,當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),過(guò)點(diǎn)P分別作AB,BC的垂線,垂足分解析:(1)1,45°,不變;(2)∠AEP的大小不變,理由見(jiàn)解析;(3).【分析】(1)當(dāng)點(diǎn)P為對(duì)角線交點(diǎn)時(shí),根據(jù)正方形的性質(zhì)可得出結(jié)論,當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),過(guò)點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.證△PAM≌△PEN,可得∠AEP的大小不變;(2)類似(1),過(guò)點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.證△PAM∽△PEN,可得∠AEP的大小不變;(3)利用(2)的結(jié)論,證BE=EC.再證△ABE∽△BCD,利用比例式求出k,再利用三角函數(shù)求出AP的長(zhǎng).【詳解】解:(1)如圖,∵k=1,∴在矩形ABCD是正方形,∵點(diǎn)P移動(dòng)到對(duì)角線交點(diǎn)處,∴PA=PE,∠AEP=45°,故,如圖,當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),過(guò)點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四邊形ABCD是正方形,∴∠MBN=90°,PN=PM,∴四邊形PMBN是正方形,∴∠MPN=90°,∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM≌△PEN,∴PA=PE,∴∠AEP=45°,故,∠AEP的大小不變;故答案為:1,45°,不變;(2)∠AEP的大小不變.理由如下:過(guò)點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四邊形ABCD是矩形,∴∠MBN=∠BAD=∠BCD=90°,∴四邊形PMBN是矩形,∴∠MPN=90°,PN=BM,又∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM∽△PEN,∴=.在Rt△PBM和Rt△BAD中,tan∠ABD=.在Rt△APE中,tan∠AEP=.∵k為定值,∴∠AEP的大小不變.(3)∵PC⊥BD,∠BCD=90°,∴∠PBC+∠PCB=∠PBC+∠BDC=∠BPE+∠EPC=90°.∵AE∥PC,∴∠AEB=∠PCB,∠AEP=∠EPC.∵tan∠AEP=k,tan∠ABD=k,∴∠AEP=∠ABD.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,AB∥CD,∴∠ABD=∠BDC,∴∠AEB=∠PCB=∠BDC=∠AEP=∠EPC,∠PBC=∠BPE,∴BE=PE=EC.∵∠AEB=∠BDC,∠ABE=∠BCD,∴△ABE∽△BCD,∴,即,∴BC2=2AB2,∴,k=.在Rt△BPC中,tan∠PCB==tan∠AEP=k=,∴PB=PC=,由勾股定理得,∴PE=BC=,∴PA=PE=.【點(diǎn)睛】本題考查了矩形的性質(zhì)與判定,正方形的判定與性質(zhì),相似三角形判定與性質(zhì),解直角三角形,解題關(guān)鍵是恰當(dāng)作輔助線,構(gòu)建全等三角形或相似三角形,利用解直角三角形的知識(shí)求解.6.(1)6;(2);(3)四邊形不是平行四邊形,理由見(jiàn)解析.【分析】(1)先根據(jù)已知條件和矩形的性質(zhì)可得CD=AB=10,AD=BC=8,再根據(jù)折疊的性質(zhì)可得DC'=DC=10,最后運(yùn)用勾股定理解解析:(1)6;(2);(3)四邊形不是平行四邊形,理由見(jiàn)解析.【分析】(1)先根據(jù)已知條件和矩形的性質(zhì)可得CD=AB=10,AD=BC=8,再根據(jù)折疊的性質(zhì)可得DC'=DC=10,最后運(yùn)用勾股定理解答即可;(2)先根據(jù)折疊的性質(zhì)和勾股定理可求得,進(jìn)而求得BE、EC,然后連接,根據(jù)平移的性質(zhì)可得,進(jìn)而說(shuō)明,最后運(yùn)用相似三角形的性質(zhì)解答即可;(3)先由折疊可得,再根據(jù)平移的性質(zhì)和等腰三角形的判定與性質(zhì)得到,過(guò)點(diǎn)作于點(diǎn)H,則且,根據(jù)相似三角形的性質(zhì)可得;設(shè),則,在中,運(yùn)用勾股定理求得和DH;然后再在中求得,可以發(fā)現(xiàn)即,即可發(fā)現(xiàn)四邊形不可能是平行四邊形.【詳解】解:(1)如圖:∵矩形中,∴CD=AB=10,AD=BC=8根據(jù)折疊的性質(zhì)可得DC'=DC=10在直角三角形ADC'中,AC'=.(2)由折疊可知:.在中,根據(jù)勾股定理可求得,∴.在中,設(shè),根據(jù)勾股定理,得,解得,即.如圖:連接,則由平移可知,,且.于是可得,∴,又∵,∴.(3)四邊形不是平行四邊形,理由如下:由折疊可知;又∵平移可知,且,∴,∴,即是等腰三角形,∴.如圖,過(guò)點(diǎn)作于點(diǎn)H,則且,∴.設(shè),則,在中,根據(jù)勾股定理,得,解得,∴,∴.而在中,,根據(jù)勾股定理可求得,∴,即,故四邊形不可能是平行四邊形.【點(diǎn)睛】本題主要考查了矩形的性質(zhì)、勾股定理以及相似三角形的判定與性質(zhì),靈活運(yùn)用相似三角形的判定與性質(zhì)成為解答本題的關(guān)鍵.7.(1)30°,6,4,7;(2)AG;(3)等邊,;(4)3,,6【分析】(1)由點(diǎn)H為AC中點(diǎn),可得AC=2AH,由折疊,點(diǎn)B與點(diǎn)H重合,與四邊形ABCD為矩形,可證GH為AC的垂直平分線,可解析:(1)30°,6,4,7;(2)AG;(3)等邊,;(4)3,,6【分析】(1)由點(diǎn)H為AC中點(diǎn),可得AC=2AH,由折疊,點(diǎn)B與點(diǎn)H重合,與四邊形ABCD為矩形,可證GH為AC的垂直平分線,可得AG=CG,∠GCH=∠GAH,可求∠ACB=30°,利用三角函數(shù)可求BC=,AG=4,BF=FC=,可求,與△ABG相似的三角形由7個(gè);(2)由EF為折痕,可證△AEH∽△AHG,可得即可;(3)由四邊形ABCD為矩形,點(diǎn)H為對(duì)角線AC中點(diǎn),可證△ABH為等邊三角形,再證△ABM∽△MHN,可得即可;(4)連結(jié)BD,當(dāng)點(diǎn)Q′在BD上時(shí),Q′D最小,先求BC=,AQ′=,可求Q′D最小=,當(dāng)BQ′⊥BD時(shí),△BDQ′面積最大∠CBQ′=60°,S△BDQ′最大=.【詳解】解(1)∵點(diǎn)H為AC中點(diǎn),∴AC=2AH,∵折疊,點(diǎn)B與點(diǎn)H重合,∴AB=AH=2,BG=HG,∠BAG=∠HAG=,∠B=∠AHG,∵四邊形ABCD為矩形,∴∠B=90°,∴∠AHG=∠B=90°,∴GH為AC的垂直平分線,∴AG=CG,∠GCH=∠GAH,∴∠BAG=∠HAG=∠GCH,∵∠BAH+∠BCH=180°-∠B=90°,∴3∠ACB=90°∴∠ACB=30°,∴∠BAG=∠HAG=∠GCH=30°,∴tan30°=,AB=2,∴BC=,∵tan∠BAG=tan30°=,∴BG=,∴AG=2BG=4,BF=FC=,∴GF=BF-BG=3-2=1,∴,∵AD∥BC,∴∠DAC=∠ACB=30°,∴∠BAG=∠HAG=∠GHF=∠HCF=∠GCH=∠EAH=∠DAC=∠BCA=30°,∵∠B=∠AHG=∠HFG=∠HFC=∠AEH=∠D=∠GHC=∠CBA=90°,∴△ABG∽△AHG∽△HFG∽△CFH∽△CHG∽△AEH∽△ADC∽△CBA,∴與△ABG相似的三角形由7個(gè),故答案為:30°;6;4;7;(2)∵EF為折痕,∴EH⊥AD,∵∠EAH=∠HAG=30°∠AHG=∠AEH=90°∴△AEH∽△AHG,∴,∴故答案為AG;(3)∵四邊形ABCD為矩形,點(diǎn)H為對(duì)角線AC中點(diǎn),∴AH=CH=BH,由圖2知AB=AH,∴AH=BH=AB,∴△ABH為等邊三角形,∴∠ABH=∠AHB=60°,∵∠AMN=∠ABH;∴∠AMN=∠ABH=∠AHB=60°,∴∠BAM+∠AMB=180°-∠ABH=120°,∠AMB+∠NMH=180°-∠AMN=120°,即∠BAM+∠AMB=∠AMB+∠NMH,∴∠BAM=∠NMH,∴△ABM∽△MHN,∴,∵AB=,MH=,∴,∴,故答案為:等邊;,(4)連結(jié)BD,當(dāng)點(diǎn)Q′在BD上時(shí),Q′D最小∵AB=2,AD=BC=6,∴BC=∵AQ′=Q′H=∴Q′D最小=當(dāng)BQ′⊥BD時(shí),△BDQ′面積最大∵tan∠DAC=,∴∠DAC=30°,∴∠CBQ′=90°-∠DBC=90°-30°=60°∴tan∠CBQ'=S△BDQ′最大=;故答案為;;6.【點(diǎn)睛】本題考查折疊性質(zhì),矩形性質(zhì),線段垂直平分線,銳角三角函數(shù),三角形相似判定與性質(zhì),等邊三角形判定與性質(zhì),兩圖形的最小距離,最大面積,掌握查折疊性質(zhì),矩形性質(zhì),線段垂直平分線,銳角三角函數(shù),三角形相似判定與性質(zhì),等邊三角形判定與性質(zhì),兩圖形的最小距離,最大面積求法是解題關(guān)鍵.8.(1)BM=PD;(2)見(jiàn)解析(3)或【分析】(1)當(dāng)n=1時(shí)四邊形ABCD和四邊形AMNP均為正方形,所以AM=AP,AB=AD,從而得出BM=PD,再根據(jù)得出,從而得出結(jié)論;(解析:(1)BM=PD;(2)見(jiàn)解析(3)或【分析】(1)當(dāng)n=1時(shí)四邊形ABCD和四邊形AMNP均為正方形,所以AM=AP,AB=AD,從而得出BM=PD,再根據(jù)得出,從而得出結(jié)論;(2)連接AC,證明,即可求解;(3)分兩種情況考慮:通過(guò)證得出對(duì)應(yīng)邊數(shù)量關(guān)系,設(shè),則解直角三角形AQM,從而計(jì)算出QM的長(zhǎng)度,從而求算CN.【詳解】(1)解:∵當(dāng)n=1時(shí)四邊形ABCD和四邊形AMNP均為正方形∴AM=AP,AB=AD∴BM=PD又∵∴∴(2)CN與PD之間的數(shù)量關(guān)系發(fā)生變化,.理由:連接AC,如圖:在矩形ABCD和矩形AMNP中,∵.AD=2AB,AP=2AM,∴,∴.易得∴△ANC∽△APD∴∴(3)分兩種情況考慮:①如圖:∵已知AD=4,AP=2,∴AB=2,AM=PN=1由圖知:∴設(shè),則,在直角三角形AQM中:解得:(舍)∴,∴∴②如圖:由①可得:,,MN=2∴【點(diǎn)睛】本題考查矩形與旋轉(zhuǎn)、相似等綜合,有一定的難度,轉(zhuǎn)化相關(guān)的線段與角度是解題關(guān)鍵.9.(1);(2)①,證明見(jiàn)解析;②;(3),【分析】(1)由等腰三角形的性質(zhì),結(jié)合等量代換即可求解;(2)①根據(jù)SAS證明,然后根據(jù)全等三角形的性質(zhì)即可證明;②由全等三角形的性質(zhì)得,然后利用等解析:(1);(2)①,證明見(jiàn)解析;②;(3),【分析】(1)由等腰三角形的性質(zhì),結(jié)合等量代換即可求解;(2)①根據(jù)SAS證明,然后根據(jù)全等三角形的性質(zhì)即可證明;②由全等三角形的性質(zhì)得,然后利用等量代換即可求解;(3)首先證明,然后根據(jù)相似三角形的性質(zhì)得到,和,即可求解.【詳解】(1)∵和均為等邊三角形∴CA=CB,CD=CE∴AC-CD=BC-CE,即AD=BE∴AD=BE;(2)①AD=BE證明:∵和均為等邊三角形∴CA=CB,CD=CE,∴∴∴AD=BE②∵∴設(shè)BC和AF交于點(diǎn)O,如圖2∵∴,即∴;(3)結(jié)論,證明:∵,AB=BC,DE=EC∴,∴∴,∴∵∴【點(diǎn)睛】本題考查了幾何變換綜合,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,關(guān)鍵證明全等和相似,并且分類討論.10.(1);(2),見(jiàn)解析;(3)【分析】(1)根據(jù)SAS可證△ABE≌△ACD,進(jìn)而可得BE=CD,結(jié)合BD+CD=BC可得BD+BE=BC,再根據(jù)等腰直角三角形中BC=即可證得;(2)過(guò)點(diǎn)A解析:(1);(2),見(jiàn)解析;(3)【分析】(1)根據(jù)SAS可證△ABE≌△ACD,進(jìn)而可得BE=CD,結(jié)合BD+CD=BC可得BD+BE=BC,再根據(jù)等腰直角三角形中BC=即可證得;(2)過(guò)點(diǎn)A作AH⊥BC,根據(jù)∠BAC=120°,AB=AC可得∠ABC=30°,,則,由(1)可知BD+BE=BC,由此即可得;(3)過(guò)Q點(diǎn)作QF∥AC交BC延長(zhǎng)線于點(diǎn)F,先證∠BQF=120°,BQ=QF,進(jìn)而可由(2)同理可知,△QBE≌△QFD,,進(jìn)而可證得,再根據(jù)cos∠EBD==cos60°=可求得,進(jìn)而求得,最后根據(jù)AQ=BQ-AB即可得到答案.【詳解】解:(1)理由如下:∵∠EAD=∠BAC=90°∴∠EAB=∠DAC在△ABE與△ACD中,∴△ABE≌△ACD(SAS)∴BE=CD,∵BD+CD=BC∴BD+BE=BC∵在Rt△ABC中,∠BAC=90°,AB=AC,∴BC=∴BD+BE=;(2)結(jié)論:,理由如下:過(guò)點(diǎn)A作AH⊥BC,∵∠BAC=120°,AB=AC∴∠ABC=30°,在Rt△ABH中,cos∠ABH==cos30°=∴BH=AB,∴由(1)同理可知BD+BE=BC,∴;(3)過(guò)Q點(diǎn)作QF∥AC交BC延長(zhǎng)線于點(diǎn)F,∴∴∠QFC=∠QBF=30°,∠BQF=120°∴BQ=QF由(2)同理可知,△QBE≌△QFD,∴cos∠EBD==cos60°=∵,∴AQ=BQ-AB=.【點(diǎn)睛】本題考查了全等三角形的判定及性質(zhì),等腰直角三角形的性質(zhì),解直角三角形的應(yīng)用,熟練掌握相關(guān)圖形的判定及性質(zhì)以及能夠作出正確的輔助線是解決本題的關(guān)鍵.11.BN=或;(1)見(jiàn)解析;(2)∠B=15°;(3)見(jiàn)解析.【分析】定義:根據(jù)勾股點(diǎn)的定理,即可求出BN的長(zhǎng);(1)根據(jù)已知條件可得到CG=GM,CH=HN,得到DG=AM,GH=MN,EH=B解析:BN=或;(1)見(jiàn)解析;(2)∠B=15°;(3)見(jiàn)解析.【分析】定義:根據(jù)勾股點(diǎn)的定理,即可求出BN的長(zhǎng);(1)根據(jù)已知條件可得到CG=GM,CH=HN,得到DG=AM,GH=MN,EH=BN,根據(jù)條件求出(BN)2=(MN)2+(AM)2,即可得到結(jié)果;(2)連接PD,根據(jù)已知條件可得PC2+BD2=CD2,進(jìn)而求出∠PDC=∠A,在Rt△PCD中,得到2∠A+∠A=90°,即可得到結(jié)果;(3)根據(jù)已知條件先求得點(diǎn)F的坐標(biāo)為(2﹣,),即可求得BF、EF,根據(jù)已知條件可得BF2+AE2=16+2a2﹣8a+﹣=EF2,即可求得結(jié)果;【詳解】定義:∵點(diǎn)M、N是線段AB的勾股點(diǎn),∴或,∴BN=.(1)如圖,∵CD=DA,CE=EB,∴DE∥AB,∴CG=GM,CH=HN,∴DG=AM,GH=MN,EH=BN,∵BN2=MN2+AM2,∴BN2=MN2+AM2,∴(BN)2=(MN)2+(AM)2,∴EH2=GH2+DG2,∴G、H是線段DE的勾股點(diǎn).(2)如圖所示,連接PD,∵AC=PC,∴∠A=∠APC,∴∠PCD=2∠A,∵C,D是線段AB的勾股點(diǎn),∴AC2+BD2=CD2,∴PC2+BD2=CD2,∵CD是⊙O的直徑,∴∠CPD=90°,∴PC2+PD2=CD2,∴PD=BD,∴∠PDC=2∠B,∵∠A=2∠B,∴∠PDC=∠A,在Rt△PCD中,∵∠PCD+∠PDC=90°,∴2∠A+∠A=90°,解得∠A=30°,則∠B=∠A=15°.(3)∵點(diǎn)P(a,b)是反比例函數(shù)y=(x>0)上的動(dòng)點(diǎn),∴b=.∵直線y=﹣x+2與坐標(biāo)軸分別交于A、B兩點(diǎn),∴點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)A的坐標(biāo)為(2,0);當(dāng)x=a時(shí),y=﹣x+2=2﹣a,∴點(diǎn)E的坐標(biāo)為(a,2﹣a);當(dāng)y=時(shí),有﹣x+2=,解得:x=2﹣,∴點(diǎn)F的坐標(biāo)為(2﹣,).∴BF==(2﹣),EF=,=|2﹣a﹣|,AE==(2﹣a).∵BF2+AE2=16+2a2﹣8a+﹣=EF2,∴以BF、AE、EF為邊的三角形是一個(gè)直角三角形,∴E、F是線段AB的勾股點(diǎn).【點(diǎn)睛】本題主要考查了勾股定理的擴(kuò)展應(yīng)用,結(jié)合中位線定理、圓周角定理等知識(shí)點(diǎn)解題是關(guān)鍵.12.(1)①1;②90°;(2)(2),,理由見(jiàn)解析;(3)或【分析】(1)①根據(jù)已知條件可知為等邊三角形,根據(jù)等邊三角形的性質(zhì)可證明,即可得出答案;②根據(jù),得出,因?yàn)椋^而推出;(2)利用已知解析:(1)①1;②90°;(2)(2),,理由見(jiàn)解析;(3)或【分析】(1)①根據(jù)已知條件可知為等邊三角形,根據(jù)等邊三角形的性質(zhì)可證明,即可得出答案;②根據(jù),得出,因?yàn)?,繼而推出;(2)利用已知條件證明△ACD∽△BCE,即可推出,;(3)當(dāng)點(diǎn)E在AF右邊時(shí),如圖2所示,由已知條件可得出,在中運(yùn)用勾股定理可求出AD的值,再運(yùn)用(2)中結(jié)論即可得出BE的值;當(dāng)點(diǎn)E在AF左邊時(shí),如圖3所示,可證明,,再運(yùn)用(2)中結(jié)論即可得出BE的值.【詳解】解:(1)①∵,,∴為等邊三角形∴∴∴∴的值為1;故答案為:1;②∵∴∵∴∴∵∴故答案為:90°.(2),.理由如下:在Rt△ABC中,,.∴.同理:.∴.又.∴.∴△ACD∽△BCE.∴,.∴.(3)當(dāng)點(diǎn)E在AF右邊時(shí),如圖2所示:∵,,,∴,∴∵∴;當(dāng)點(diǎn)E在AF左邊時(shí),如圖3所示同理,可得,∵∴∴∴∵∵∴綜上所述,BE的值為或.【點(diǎn)睛】本題是一道關(guān)于三角形相似的綜合題目,涉及的知識(shí)點(diǎn)有全等三角形的判定及性質(zhì)、相似三角形的判定及性質(zhì)、等邊三角形的判定、解直角三角形、勾股定理的應(yīng)用等多個(gè)知識(shí)點(diǎn),它充分體現(xiàn)了數(shù)學(xué)解題中的數(shù)形結(jié)合思想和整體轉(zhuǎn)化思想.13.(1)見(jiàn)解析;(2)EF=;(3)BP=.【分析】(1)過(guò)點(diǎn)A作AP∥EF,交BC于P,過(guò)點(diǎn)B作BQ∥GH,交CD于Q,如圖1,易證AP=EF,GH=BQ,△ABP∽△BCQ,然后運(yùn)用相似三角形解析:(1)見(jiàn)解析;(2)EF=;(3)BP=.【分析】(1)過(guò)點(diǎn)A作AP∥EF,交BC于P,過(guò)點(diǎn)B作BQ∥GH,交CD于Q,如圖1,易證AP=EF,GH=BQ,△ABP∽△BCQ,然后運(yùn)用相似三角形的性質(zhì)就可解決問(wèn)題;(2)連接BD,根據(jù)矩形的性質(zhì)得出BD的長(zhǎng),再根據(jù)結(jié)論(1)得出,進(jìn)而可求出EF的長(zhǎng).(3)過(guò)點(diǎn)F作FH⊥EG于H,過(guò)點(diǎn)P作PJ⊥BF于J.根據(jù)矩形的性質(zhì)得到AD、CD的長(zhǎng),由結(jié)論(1)可得出DG的長(zhǎng),再由勾股定理得出AG的長(zhǎng),然后根據(jù)翻折的性質(zhì)結(jié)合勾股定理得出四邊形HGPF是矩形,進(jìn)而得出FH的長(zhǎng)度,最后根據(jù)相似三角形得出BJ、PJ的長(zhǎng)度就可以得出BP的長(zhǎng)度.【詳解】(1)如圖①,過(guò)點(diǎn)A作AP∥EF,交BC于P,過(guò)點(diǎn)B作BQ∥GH,交CD于Q,BQ交AP于T.∵四邊形ABCD是矩形,∴AB∥DC,AD∥BC.∴四邊形AEFP、四邊形BGHQ都是平行四邊形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠BAT+∠ABT=90°.∵四邊形ABCD是矩形,∴∠ABP=∠C=90°,AD=BC,∴∠ABT+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP∽△BCQ,∴,∴.(2)如圖②中,連接BD.∵四邊形ABCD是矩形,∴∠C=90°,AB=CD=2,∴BD=,∵D,B關(guān)于EF對(duì)稱,∴BD⊥EF,∴,∴,∴EF=.(3)如圖③中,過(guò)點(diǎn)F作FH⊥EG于H,過(guò)點(diǎn)P作PJ⊥BF于J.∵四邊形ABCD是矩形,∴AB=CD=2,AD=BC=3,∠A=90°,∴=,∴DG=,∴AG==1,由翻折可知:ED=EG,設(shè)ED=EG=x,在Rt△AEG中,∵EG2=AE2+AG2,∴x2=AG2+AE2,∴x2=(3﹣x)2+1,∴x=,∴DE=EG=,∵FH⊥EG,∴∠FHG=∠HGP=∠GPF=90°,∴四邊形HGPF是矩形,∴FH=PG=CD=2,∴EH=,∴GH=FP=CF=EG﹣EH=﹣=1,∵PF∥EG,EA∥FB,∴∠AEG=∠JPF,∵∠A=∠FJP=90°,∴△AEG∽△JFP,∴,∴,∴FJ=,PJ=,∴BJ=BC﹣FJ﹣CF=3﹣﹣1=,在Rt△BJP中,BP=.【點(diǎn)睛】本題主要考查了矩形的性質(zhì)、相似三角形的判定與性質(zhì),解題關(guān)鍵在于靈活運(yùn)用矩形的性質(zhì)、相似三角形的判定與性質(zhì),學(xué)會(huì)添加常用輔助線,構(gòu)造相似三角形解決問(wèn)題,學(xué)會(huì)利用參數(shù)解決問(wèn)題,屬于中考?jí)狠S題.14.(1)60;(2)見(jiàn)解析;(3)見(jiàn)解析【分析】(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,AM=AN,∠BAC=∠MAN=60°,進(jìn)而得到∠BAM=∠CAN,再利用SAS可證明≌,繼而得出結(jié)論;解析:(1)60;(2)見(jiàn)解析;(3)見(jiàn)解析【分析】(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,AM=AN,∠BAC=∠MAN=60°,進(jìn)而得到∠BAM=∠CAN,再利用SAS可證明≌,繼而得出結(jié)論;(2)也可以通過(guò)證明≌,得出結(jié)論,和(1)的思路完全一樣;(3)當(dāng)∠ABC=∠AMN時(shí),∽,利用相似的性質(zhì)得到,又根據(jù)∠BAM=∠CAN,證得∽,即可得到答案.【詳解】(1)證明:∵、是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAM=∠CAN,

∵在和中,,∴≌(SAS),∴∠ABC=∠ACN;∵是等邊三角形∴∠ABC=60°∴∠ACN=∠ABC=60°.(2)結(jié)論∠ACN=60°仍成立.理由如下:∵、都是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∴≌,∴∠ACN=∠ABM=60°.(3)添加條件:∠ABC=∠AMN.理由如下:∵BA=BC,MA=MN,∠ABC=∠AMN,∴∠BAC=∠MAN,∴∽,∴.又∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,∴∠BAM=∠CAN,∴∽,∴∠ABC=∠ACN.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),以及全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是仔細(xì)觀察圖形,找到全等的條件,利用全等的性質(zhì)證明結(jié)論.15.(1)見(jiàn)解析;(2)2:1;(3)點(diǎn)Q是AB邊的四等分點(diǎn),點(diǎn)E是AD邊的五等分點(diǎn),理由見(jiàn)解析【分析】(1)如圖1,連接PC,根據(jù)正方形的性質(zhì)、HL定理證明△CD′P≌△CBP,根據(jù)全等三角形的性解析:(1)見(jiàn)解析;(2)2:1;(3)點(diǎn)Q是AB邊的四等分點(diǎn),點(diǎn)E是AD邊的五等分點(diǎn),理由見(jiàn)解析【分析】(1)如圖1,連接PC,根據(jù)正方形的性質(zhì)、HL定理證明△CD′P≌△CBP,根據(jù)全等三角形的性質(zhì)得出結(jié)論;(2)設(shè)BP=x,根據(jù)翻轉(zhuǎn)變換的性質(zhì)、勾股定理列出方程,解方程即可;(3)如圖2,連接QM,證明Rt△AQM≌Rt△D′QM(HL),得到AQ=D′Q,設(shè)正方形ABCD的邊長(zhǎng)為1,AQ=QD′=y(tǒng),根據(jù)勾股定理列出方程,解方程即可.【詳解】(1)證明:如圖1,連接PC.∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∴∠MD′C=∠D=90°,∴∠CD′P=∠B=90°,在Rt△CD′P和Rt△CBP中,,∴Rt△CD′P≌Rt△CBP(HL),∴BP=D′P;(2)解:設(shè)正方形紙片ABCD的邊長(zhǎng)為1.則AM=DM=D′M=.設(shè)BP=x,則MP=MD′+D′P=DM+BP=+x,AP=1﹣x,在Rt△AMP中,根據(jù)勾股定理得AM2+AP2=MP2.∴()2+(1﹣x)2=(+x)2,解得x=,∴BP=,AP=,∴AP:BP=2:1,故答案為:2:1.(3)解:點(diǎn)Q是AB邊的四等分點(diǎn),點(diǎn)E是AD邊的五等分點(diǎn).理由:如圖2,連接QM.∴∠QD′M=180°﹣∠MD′C=90°,∴∠QD′M=∠A=90°.在Rt△AQM和Rt△D′QM中,,∴Rt△AQM≌Rt△D′QM(HL),∴AQ=D′Q,設(shè)正方形ABCD的邊長(zhǎng)為1,AQ=QD′=y(tǒng),則QP=AP﹣AQ=﹣y.在Rt△QPD′中,根據(jù)勾股定理得QD′2+D′P2=QP2.∵D′P=BP=,∴y2+()2=(﹣y)2,解得y=.∴AQ:AB=1:4,即點(diǎn)Q是AB邊的四等分點(diǎn),∵EF∥AB,∴,即,解得AE=.∴點(diǎn)E為AD的五等分點(diǎn).【點(diǎn)睛】本題是四邊形綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),翻轉(zhuǎn)變換的性質(zhì)全等三角形的判定和性質(zhì),勾股定理等知識(shí),熟練掌握折疊的性質(zhì)及方程思想是解題的關(guān)鍵.16.(1)①見(jiàn)解析;②CG=2EG;(2)見(jiàn)解析;(3);(4)【分析】(1)①根據(jù)等腰直角三角形的性質(zhì)證得AD=CD,再證明△AFG△ADG,即可證明結(jié)論;②根據(jù)①得到BC=2AF,F(xiàn)G=GD,解析:(1)①見(jiàn)解析;②CG=2EG;(2)見(jiàn)解析;(3);(4)【分析】(1)①根據(jù)等腰直角三角形的性質(zhì)證得AD=CD,再證明△AFG△ADG,即可證明結(jié)論;②根據(jù)①得到BC=2AF,F(xiàn)G=GD,再證明△AFG△BCG,即可得到CG=2EG;(2)先證得四邊形ABEC為正方形,同理得△AFG△AEG和△AFG△BCG,即可得證;(3)根據(jù)等腰直角三角形的性質(zhì)得到,證得△AFG△BCG,即可求解;(4)根據(jù)等腰直角三角形的性質(zhì)得到BC=2AD,繼而得到,由△AFG△BCG,即可求解.【詳解】(1)①△ABC中,∠BAC=90°,AB=AC,AD⊥BC于點(diǎn)D,∴AD=BD=CD=BC,∠BAD=∠CAD=45°,根據(jù)旋轉(zhuǎn)的性質(zhì)得:AF=AD,∠DAF=90°,∴∠GAF=∠GAD=45°,在△AFG和△ADG中,,∴△AFG△ADG,∴AF=AD,∴AF=CD;②CG=2EG,理由如下:由①得:∠GAF=∠B=45°,AF=BC,∴AF∥BC,2AF=BC,∴△AFG△BCG,∴,∴CG=2FG,∵△AFG△ADG,∴FG=DG,即FG=EG,∴CG=2EG;(2)連接EB、EC,∵∠BAC=90°,AB=AC,AD⊥BC于點(diǎn)D,DE=AD,∴DE=AD=BD=CD,且AE⊥BC,∠BAC=90°,∴四邊形ABEC為正方形,∴BC=AE,根據(jù)旋轉(zhuǎn)的性質(zhì)得:AF=AE,∠EAF=90°,∴∠GAF=∠GAE=45°,在△AFG和△AEG中,,∴△AFG△AEG,∴AF=AE=BC,F(xiàn)G=EG,在△AFG和△BCG中,,∴△AFG△BCG,∴FG=CG,∴FG=CG=EG,∴CF=2EG;(3)同理得:FG=EG,△ABC中,∠BAC=90°,AB=AC,∴,即,同理得:△AFG△BCG,∴,∴,∴,∴;(4)同理可得:FG=EG,BC=2AD,AF=AE,∵,∴,同理可得:△AFG△BCG,∴,∴,∴,∴;【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、正方形的判定和性質(zhì)以及旋轉(zhuǎn)變換的性質(zhì),掌握全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)是解題的關(guān)鍵.17.(1);(2)或;(3)或【分析】(1)延長(zhǎng)到,使,連接,過(guò)作于,在中,利用勾股定理求得EH的長(zhǎng),再利用三角形中位線定理即可求解;(2)分在上方和下方兩種情況討論,延長(zhǎng)與的延長(zhǎng)線交于一點(diǎn),利用解析:(1);(2)或;(3)或【分析】(1)延長(zhǎng)到,使,連接,過(guò)作于,在中,利用勾股定理求得EH的長(zhǎng),再利用三角形中位線定理即可求解;(2)分在上方和下方兩種情況討論,延長(zhǎng)與的延長(zhǎng)線交于一點(diǎn),利用等腰直角三角形的性質(zhì)結(jié)合三角形中位線定理即可求解;(3)分點(diǎn)D在線段AC上和在AC延長(zhǎng)線上兩種情況討論,仿照(1)的方法即可求解.【詳解】(1)延長(zhǎng)到,使,連接,∵B為中點(diǎn),為的中點(diǎn),∴是的中位線,∴,過(guò)作于,∵,,∴四邊形BDEG是矩形,∵等腰直角三角形,,∴∠C=∠A=45,∵,∴等腰直角三角形,∵,∴,∴,∵在中,,∴;(2)當(dāng)時(shí),分成兩種情況:如圖在上方,延長(zhǎng)與的延長(zhǎng)線交于一點(diǎn),∵∠BAC=45,∴是等腰直角三角形,且B為AH的中點(diǎn),∴,∴,∵點(diǎn)F是AE中點(diǎn),∴,∴;如圖,在下方,延長(zhǎng)與的延長(zhǎng)線交于一點(diǎn),同理是等腰直角三角形,為中點(diǎn),∴,∴,∵點(diǎn)F是AE中點(diǎn),∴,∴;(3)當(dāng)點(diǎn)D在線段AC上時(shí),延長(zhǎng)到,使,連接,∵B為中點(diǎn),為的中點(diǎn),∴是的中位線,過(guò)作于,∠ACB+∠DCE=90,∠ABC=90,∴四邊形BCEG是矩形,∴GE=BC=6,BG=CE=2,∴GH=2+6=8,∴EH=,∴;當(dāng)點(diǎn)D在AC延長(zhǎng)線上時(shí),延長(zhǎng)到,使,連接,∵B為中點(diǎn),為的中點(diǎn),∴是的中位線,過(guò)作于,同理四邊形BCEG是矩形,∴GE=BC=6,BG=CE=2,∴GH=6-2=4,∴EH=,∴;【點(diǎn)睛】本題是幾何變換綜合題,主要考查了矩形的判定和性質(zhì),三角形中位線定理,勾股定理的應(yīng)用,等腰直角三角形的性質(zhì)等,解題的關(guān)鍵是靈活應(yīng)用所學(xué)知識(shí)解決問(wèn)題,屬于中考?jí)狠S題.18.(1)等腰直角三角形;(2)成立,見(jiàn)解析;(3)大于等于,小于等于.【分析】(1)先作出輔助線構(gòu)造全等,進(jìn)而證明FG與DE、AC均平行,再利用平行線間存在的角度關(guān)系推導(dǎo)出∠GFH為90°、∠FH解析:(1)等腰直角三角形;(2)成立,見(jiàn)解析;(3)大于等于,小于等于.【分析】(1)先作出輔助線構(gòu)造全等,進(jìn)而證明FG與DE、AC均平行,再利用平行線間存在的角度關(guān)系推導(dǎo)出∠GFH為90°、∠FHG為45°,從而證明△GFH為等腰直角三角形;(2)先作出輔助線構(gòu)造相似,從而證明FH與GH之間的比例關(guān)系,再利用角度之間的關(guān)系即可證明;(3)通過(guò)前兩問(wèn)證明得到△GFH的周長(zhǎng)與CE長(zhǎng)之間的關(guān)系,再通過(guò)觀察E點(diǎn)運(yùn)動(dòng)軌跡,分別找到CE取得最大值和最小值的位置,解出CE長(zhǎng),進(jìn)而即可求得△GFH周長(zhǎng)的取值范圍.【詳解】解:(1)等腰直角三角形.連接EG并延長(zhǎng)交AC于K.∵DE⊥BC,∠ACB=90°∴DEAC∴∠EDG=∠KCG又∵G為CD中點(diǎn)∴DG=CG∴△DGE≌△CGK(ASA)∴EG=GK又∵F為AE中點(diǎn),EF=AF∴FGACDE∴∠EFG=∠DEF又∵F、H分別為AE、AC中點(diǎn)∴FHEC∴∠AFH=∠AEC,∠AHF=∠ACE=90°而∠GFH=180°-(∠EFG+∠AFH)∠EFG+∠AFH=∠DEF+∠AEC=90°∴∠GFH=180°-90°=90°又∵G、H分別為CD、AC中點(diǎn)∴GHAD∴∠GHC=∠DAC=45°而∠FHG=180°-∠GHC-∠AHF=180°-45°-90°=45°∴△FGH為等腰直角三角形.(2)仍然成立,理由如下.連接CE并延長(zhǎng)交AB于點(diǎn)P,交AD的延長(zhǎng)線于點(diǎn)O.由圖①可知,∴∴∵,∴∴∴,∵∴∵點(diǎn)F,G,H分別為AE,CD,AC的中點(diǎn)∴,;,∴,,∴為等腰直角三角形.(3)當(dāng)△BDE繞點(diǎn)B在平面內(nèi)自由旋轉(zhuǎn)時(shí),作出E點(diǎn)軌跡如圖所示,為一個(gè)以B為圓心,BE長(zhǎng)為半徑的圓.∵△GFH的周長(zhǎng)為GF、FH和GH的和且由(2)知△GFH恒為等腰直角三角形∴又∵F、H分別為AE、AC中點(diǎn)∴FH=CE當(dāng)E在圓B上運(yùn)動(dòng)時(shí),而CB=6,CE=2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論