版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
滬科版9年級(jí)下冊期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2、如圖,在Rt△ABC中,,,點(diǎn)D、E分別是AB、AC的中點(diǎn).將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,射線BD與射線CE交于點(diǎn)P,在這個(gè)旋轉(zhuǎn)過程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點(diǎn)P運(yùn)動(dòng)的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④3、如圖,在△ABC中,∠BAC=130°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△DEC,點(diǎn)A,B的對應(yīng)點(diǎn)分別為D,E,連接AD.當(dāng)點(diǎn)A,D,E在同一條直線上時(shí),則∠BAD的大小是()A.80° B.70° C.60° D.50°4、拋一枚質(zhì)地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.5、如圖是下列哪個(gè)立體圖形的主視圖()A. B.C. D.6、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.7、若的圓心角所對的弧長是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.48、下列關(guān)于隨機(jī)事件的概率描述正確的是()A.拋擲一枚質(zhì)地均勻的硬幣出現(xiàn)“正面朝上”的概率為0.5,所以拋擲1000次就一定有500次“正面朝上”B.某種彩票的中獎(jiǎng)率為5%,說明買100張彩票有5張會(huì)中獎(jiǎng)C.隨機(jī)事件發(fā)生的概率大于或等于0,小于或等于1D.在相同條件下可以通過大量重復(fù)實(shí)驗(yàn),用一個(gè)隨機(jī)事件的頻率去估計(jì)概率第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、有五張正面分別標(biāo)有數(shù)字,,0,1,2的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,將該卡片放回洗勻后從中再任取一張,將該卡片上的數(shù)字記為,則為非負(fù)數(shù)的概率為________.2、如圖,在ABC中,∠C=90°,AB=10,在同一平面內(nèi),點(diǎn)O到點(diǎn)A,B,C的距離均等于a(a為常數(shù)).那么常數(shù)a的值等于________.3、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.4、如圖,、分別與相切于A、B兩點(diǎn),若,則的度數(shù)為________.5、如圖,在⊙O中,∠BOC=80°,則∠A=___________°.6、從﹣2,1兩個(gè)數(shù)中隨機(jī)選取一個(gè)數(shù)記為m,再從﹣1,0,2三個(gè)數(shù)中隨機(jī)選取一個(gè)數(shù)記為n,則m、n的取值使得一元二次方程x2﹣mx+n=0有兩個(gè)不相等的實(shí)數(shù)根的概率是_____.7、皮影戲是一種以獸皮或紙板做成的人物剪影,在燈光照射下用隔亮布進(jìn)行表演的民間戲?。硌菡咴谀缓蟛倏v剪影、演唱,或配以音樂,具有濃厚的鄉(xiāng)土氣息.“皮影戲”中的皮影是______(填寫“平行投影”或“中心投影”)三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,已知AB是的直徑,點(diǎn)D為弦BC中點(diǎn),過點(diǎn)C作切線,交OD延長線于點(diǎn)E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.2、在平面直角坐標(biāo)系xOy中,對于點(diǎn)P,O,Q給出如下定義:若OQ<PO<PQ且PO≤2,我們稱點(diǎn)P是線段OQ的“潛力點(diǎn)”已知點(diǎn)O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是線段OQ的“潛力點(diǎn)”是_____________;(2)若點(diǎn)P在直線y=x上,且為線段OQ的“潛力點(diǎn)”,求點(diǎn)P橫坐標(biāo)的取值范圍;(3)直線y=2x+b與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,當(dāng)線段MN上存在線段OQ的“潛力點(diǎn)”時(shí),直接寫出b的取值范圍3、如圖,AB是⊙O的直徑,點(diǎn)D,E在⊙O上,四邊形BDEO是平行四邊形,過點(diǎn)D作交AE的延長線于點(diǎn)C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.4、在中,,,過點(diǎn)A作BC的垂線AD,垂足為D,E為線段DC上一動(dòng)點(diǎn)(不與點(diǎn)C重合),連接AE,以點(diǎn)A為中心,將線段AE逆時(shí)針旋轉(zhuǎn)90°得到線段AF,連接BF,與直線AD交于點(diǎn)G.(1)如圖,當(dāng)點(diǎn)E在線段CD上時(shí),①依題意補(bǔ)全圖形,并直接寫出BC與CF的位置關(guān)系;②求證:點(diǎn)G為BF的中點(diǎn).(2)直接寫出AE,BE,AG之間的數(shù)量關(guān)系.5、如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點(diǎn)B關(guān)于原點(diǎn)對稱的點(diǎn)B′的坐標(biāo):;(2)平移△ABC,使平移后點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo)為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2.6、如圖,的直徑cm,AM和BN是它的切線,DE與相切于點(diǎn)E,并與AM,BN分別相交于D,C兩點(diǎn).設(shè),,求y關(guān)于x的函數(shù)解析式.7、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(diǎn)(與A、B不重合),連接CD,將線段CD繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°得到線段CE,連接DE、BE(1)求證:△ACD≌△BCE;(2)若BE=5,DE=13,求AB的長-參考答案-一、單選題1、C【詳解】解:選項(xiàng)A是軸對稱圖形,不是中心對稱圖形,故A不符合題意;選項(xiàng)B不是軸對稱圖形,是中心對稱圖形,故B不符合題意;選項(xiàng)C既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項(xiàng)D是軸對稱圖形,不是中心對稱圖形,故D不符合題意;故選C【點(diǎn)睛】本題考查的是軸對稱圖形的識(shí)別,中心對稱圖形的識(shí)別,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵,軸對稱圖形:把一個(gè)圖形沿某條直線對折,直線兩旁的部分能夠完全重合;中心對稱圖形:把一個(gè)圖形繞某點(diǎn)旋轉(zhuǎn)后能與自身重合.2、B【分析】根據(jù),,點(diǎn)D、E分別是AB、AC的中點(diǎn).得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點(diǎn)P在以點(diǎn)O為圓心,OA長為半徑,的圓上運(yùn)動(dòng)軌跡為,L可判斷④點(diǎn)P運(yùn)動(dòng)的路徑長為正確即可.【詳解】解:∵,,點(diǎn)D、E分別是AB、AC的中點(diǎn).∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點(diǎn)P在以點(diǎn)O為圓心,OA長為半徑,的圓上運(yùn)動(dòng)軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點(diǎn)P運(yùn)動(dòng)的路徑長為正確;正確的是①②④.故選B.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點(diǎn)定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準(zhǔn)確圖形是解題關(guān)鍵.3、A【分析】根據(jù)三角形旋轉(zhuǎn)得出,,根據(jù)點(diǎn)A,D,E在同一條直線上利用鄰補(bǔ)角關(guān)系求出,根據(jù)等腰三角形的性質(zhì)即可得到∠DAC=50°,由此即可求解.【詳解】證明:∵繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到,∴,,∴∠ADC=∠DAC,∵點(diǎn)A,D,E在同一條直線上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故選A.【點(diǎn)睛】本題考查三角形旋轉(zhuǎn)性質(zhì),鄰補(bǔ)角的性質(zhì),等腰三角形的性質(zhì)與判定,解題的關(guān)鍵在于熟練掌握旋轉(zhuǎn)的性質(zhì).4、B【分析】根據(jù)隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,可以分別假設(shè)出三次情況,畫出樹狀圖即可.【詳解】解:隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點(diǎn)睛】本題主要考查了樹狀圖法求概率,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.5、B【分析】根據(jù)主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點(diǎn)睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是掌握由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來考慮整體形狀.6、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關(guān)鍵是判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.7、C【分析】先設(shè)半徑為r,再根據(jù)弧長公式建立方程,解出r即可【詳解】設(shè)半徑為r,則周長為2πr,120°所對應(yīng)的弧長為解得r=3故選C【點(diǎn)睛】本題考查弧長計(jì)算,牢記弧長公式是本題關(guān)鍵.8、D【分析】根據(jù)隨機(jī)事件、必然事件以及不可能事件的定義即可作出判斷.【詳解】解:概率反映的是隨機(jī)性的規(guī)律,但每次試驗(yàn)出現(xiàn)的結(jié)果具有不確定,故選項(xiàng)A、B錯(cuò)誤;隨機(jī)事件發(fā)生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故選項(xiàng)C錯(cuò)誤;在相同條件下可以通過大量重復(fù)實(shí)驗(yàn),用一個(gè)隨機(jī)事件的頻率去估計(jì)概率,故選項(xiàng)D正確;故選:D.【點(diǎn)睛】本題考查了隨機(jī)事件、必然事件以及不可能事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題1、【分析】求出為負(fù)數(shù)的事件個(gè)數(shù),進(jìn)而得出為非負(fù)數(shù)的事件個(gè)數(shù),然后求解即可.【詳解】解:兩次取卡片共有種可能的事件;兩次取得卡片數(shù)字乘積為負(fù)數(shù)的事件為等8種可能的事件∴為非負(fù)數(shù)共有種∴為非負(fù)數(shù)的概率為故答案為:.【點(diǎn)睛】本題考查了列舉法求隨機(jī)事件的概率.解題的關(guān)鍵在于求出事件的個(gè)數(shù).2、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可知道點(diǎn)到點(diǎn)A,B,C的距離相等,如下圖:,,故答案是:5.【點(diǎn)睛】本題考查了直角三角形的外接圓的外心,解題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.3、2【分析】連接OC,利用半徑相等以及三角形的外角性質(zhì)求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質(zhì)即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點(diǎn)睛】本題考查了垂徑定理和含30°角的直角三角形的性質(zhì).熟練掌握垂徑定理是解題的關(guān)鍵.4、【分析】根據(jù)已知條件可得出,,再利用圓周角定理得出即可.【詳解】解:、分別與相切于、兩點(diǎn),,,,,.故答案為:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是切線的性質(zhì)以及圓周角定理,掌握以上知識(shí)點(diǎn)是解此題的關(guān)鍵.5、40°度【分析】直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:與是同弧所對的圓心角與圓周角,,.故答案為:.【點(diǎn)睛】本題考查的是圓周角定理,解題的關(guān)鍵是熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.6、【分析】先畫樹狀圖列出所有等可能結(jié)果,從中找到使方程有兩個(gè)不相等的實(shí)數(shù)根,即m>n的結(jié)果數(shù),再根據(jù)概率公式求解可得.【詳解】解:畫樹狀圖如下:由樹狀圖知,共有12種等可能結(jié)果,其中能使方程x2-mx+n=0有兩個(gè)不相等的實(shí)數(shù)根,即m2-4n>0,m2>4n的結(jié)果有4種結(jié)果,∴關(guān)于x的一元二次方程x2-mx+n=0有兩個(gè)不相等的實(shí)數(shù)根的概率是,故答案為:.【點(diǎn)睛】本題是概率與一元二次方程的根的判別式相結(jié)合的題目.正確理解列舉法求概率的條件以及一元二次方程有根的條件是關(guān)鍵.7、中心投影【分析】根據(jù)平行投影和中心投影的定義解答即可.【詳解】解:“皮影戲”中的皮影是中心投影.故答案是中心投影.【點(diǎn)睛】本題主要考查了平行投影和中心投影,中心投影是指把光由一點(diǎn)向外散射形成的投影,平行投影是在一束平行光線照射下形成的投影.三、解答題1、(1)見解析(2)見解析【分析】(1)由垂徑定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后說明Rt△CDE≌Rt△BDE,最后運(yùn)用全等三角形的性質(zhì)即可證明;(2)由等腰三角形的性質(zhì)可得∠ECB=∠EBC、∠OCB=∠OBC,再根據(jù)CE是切線得到∠OCE=90°,即∠OCB+∠BCE=90°,進(jìn)而說明BE⊥AB即可證明.(1)證明:∵點(diǎn)D為弦BC中點(diǎn)∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=BD,∠CDE=∠BDE,DE=DE∴Rt△CDE≌Rt△BDE∴EC=EB.(2)證明:∵EC=EB,OC=OB∴∠ECB=∠EBC,∠OCB=∠OBC,∵CE是切線∴∠OCE=90°,即∠OCB+∠BCE=90°∴∠OBC+∠EBC=90°,即BE⊥AB∴BE是的切線.【點(diǎn)睛】本題主要考查了垂徑定理、全等三角形的判定與性質(zhì)、切線的證明、等腰三角形的性質(zhì)等知識(shí)點(diǎn),掌握垂徑定理是解答本題的關(guān)鍵.2、(1);(2);(3)或【分析】(1)分別計(jì)算出OQ、PO和PQ的長度,比較即可得出答案;(2)先判斷點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在線段OQ垂直平分線的左側(cè),結(jié)合PO≤2,點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),可得點(diǎn)P在如圖所示的線段AB上(不包含點(diǎn)B),過作軸,過作軸,垂足分別為再根據(jù)圖形的性質(zhì)求解從而可得答案;(3)由(2)得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè),再分兩種情況討論:當(dāng)時(shí),當(dāng)時(shí),分別畫出兩種情況下的臨界直線再根據(jù)臨界直線經(jīng)過的特殊點(diǎn)求解的值,再確定范圍即可.【詳解】解:(1)O(0,0),Q(1,0),P1(0,-1),P2(,),P3(-1,1)不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點(diǎn)”,同理:所以不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點(diǎn)”,同理:所以滿足:OQ<PO<PQ且PO≤2,所以是線段OQ的“潛力點(diǎn)”,故答案為:P3(2)∵點(diǎn)P為線段OQ的“潛力點(diǎn)”,∴OQ<PO<PQ且PO≤2,∵OQ<PO,∴點(diǎn)P在以O(shè)為圓心,1為半徑的圓外∵PO<PQ,∴點(diǎn)P在線段OQ垂直平分線的左側(cè),而的垂直平分線為:∵PO≤2,∴點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi)又∵點(diǎn)P在直線y=x上,∴點(diǎn)P在如圖所示的線段AB上(不包含點(diǎn)B)過作軸,過作軸,垂足分別為由題意可知△BOC和△AOD是等腰三角形,∴∴-≤xp<-(3)由(2)得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè)當(dāng)時(shí),過時(shí),即函數(shù)解析式為:此時(shí)則當(dāng)與半徑為2的圓相切于時(shí),則由而當(dāng)時(shí),如圖,同理可得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè),同理:當(dāng)過則直線為在直線上,此時(shí)當(dāng)過時(shí),則所以此時(shí):綜上:的范圍為:1<b≤或<b<-1【點(diǎn)睛】本題考查的是新定義情境下的知識(shí)運(yùn)用,圓的基本性質(zhì),圓的切線的性質(zhì),一次函數(shù)的綜合應(yīng)用,銳角三角函數(shù)的應(yīng)用,勾股定理的應(yīng)用,數(shù)形結(jié)合是解本題的關(guān)鍵.3、(1)見詳解;(2)【分析】(1)連接OD,由題意易得,則有△ODB是等邊三角形,然后可得△AEO也為等邊三角形,進(jìn)而可得OD∥AC,最后問題可求證;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圓O的半徑,進(jìn)而可得扇形OED和△OED的面積,則有弓形ED的面積,最后問題可求解.【詳解】(1)證明:連接OD,如圖所示:∵四邊形BDEO是平行四邊形,∴,∴△ODB是等邊三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也為等邊三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°,∵OD是圓O的半徑,∴CD是⊙O的切線.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO為等邊三角形,∴ED=OE=AE,∵CD⊥AE,∠CED=60°,∴∠CDE=30°,∴,∵,∴,∴,設(shè)△OED的高為h,∴,∴,∴.【點(diǎn)睛】本題主要考查扇形面積公式、切線的判定定理及解直角三角形,熟練掌握扇形面積公式、切線的判定定理及解直角三角形是解題的關(guān)鍵.4、(1)①BC⊥CF;證明見詳解;②見詳解;(2)2AE2=4AG2+BE2.證明見詳解.【分析】(1)①如圖所示,BC⊥CF.根據(jù)將線段AE逆時(shí)針旋轉(zhuǎn)90°得到線段AF,得出AE=AF,∠EAF=90°,可證△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根據(jù)AD⊥BC,BC⊥CF.可得AD∥CF,可證△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延長BA交CF延長線于H,根據(jù)等腰三角形性質(zhì)可得AD平分∠BAC,可得∠BAD=∠CAD=,可證△BAG∽△BHF,得出HF=2AG,再證△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.【詳解】解:(1)①如圖所示,BC⊥CF.∵將線段AE逆時(shí)針旋轉(zhuǎn)90°得到線段AF,∴AE=AF,∠EAF=90°,∴∠EAC+∠CAF=90°,∵,,∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴∠ABE=∠ACF=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,∴BC⊥CF;②∵AD⊥BC,BC⊥CF.∴AD∥CF,∴∠BDG=∠BCF=90°,∠BGD=∠BFC,∴△BDG∽△BCF,∴,∵,AD⊥BC,∴BD=DC=,∴,∴,∴,∴BG=GF;(2)2AE2=4AG2+BE2.延長BA交CF延長線于H,∵AD⊥BC,AB=AC,∴AD平分∠BAC,∴∠BAD=∠CAD=,∵BG=GF,AG∥HF,∴∠BAG=∠H=45°,∠AGB=∠HFB,∴△BAG∽△BHF,∴,∴HF=2AG,∵∠ACE=45°,∴∠ACE=∠H,∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,∴∠EAC=∠FAH,在△AEC和△AFH中,,∴△AEC≌△AFH(AAS),∴EC=FH=2AG,在Rt△AEF中,根據(jù)勾股定理,在Rt△ECF中,即.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),三角形完全判定與性質(zhì),等腰直角三角形性質(zhì),三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職作物生產(chǎn)技術(shù)(農(nóng)業(yè)施肥技術(shù))試題及答案
- 2025年高職航海技術(shù)(海洋捕撈技術(shù))試題及答案
- 2026年國際物流(報(bào)關(guān)流程指導(dǎo))試題及答案
- 2025年高職(無人機(jī)應(yīng)用技術(shù))維修技術(shù)綜合測試題
- 2025年中職人力資源管理事務(wù)(員工招聘基礎(chǔ))試題及答案
- 2025年中職(新能源汽車技術(shù))充電系統(tǒng)檢測技術(shù)階段測試題
- 2025年中職農(nóng)村經(jīng)濟(jì)綜合管理(農(nóng)村財(cái)務(wù)管理)試題及答案
- 2025年高職工業(yè)分析技術(shù)(質(zhì)量控制基礎(chǔ))試題及答案
- 2025年中職旅游管理(出境旅游)試題及答案
- 2025年高職生物技術(shù)(細(xì)胞工程基礎(chǔ))試題及答案
- 2026年甘肅省蘭州市皋蘭縣蘭泉污水處理有限責(zé)任公司招聘筆試參考題庫及答案解析
- 陶瓷工藝品彩繪師崗前工作標(biāo)準(zhǔn)化考核試卷含答案
- 2025年全國高壓電工操作證理論考試題庫(含答案)
- 居間合同2026年工作協(xié)議
- 2025-2026學(xué)年(通*用版)高二上學(xué)期期末測試【英語】試卷(含聽力音頻、答案)
- 翻車機(jī)工操作技能水平考核試卷含答案
- 醫(yī)療機(jī)構(gòu)信息安全建設(shè)與風(fēng)險(xiǎn)評估方案
- 員工宿舍安全培訓(xùn)資料課件
- 網(wǎng)絡(luò)銷售的專業(yè)知識(shí)培訓(xùn)課件
- TOC戰(zhàn)略思想《關(guān)鍵鏈》
- NB-T 10816-2021 非工業(yè)用戶供電系統(tǒng)用諧波治理裝置技術(shù)條件
評論
0/150
提交評論