解析卷-滬科版9年級下冊期末試卷含答案詳解【考試直接用】_第1頁
解析卷-滬科版9年級下冊期末試卷含答案詳解【考試直接用】_第2頁
解析卷-滬科版9年級下冊期末試卷含答案詳解【考試直接用】_第3頁
解析卷-滬科版9年級下冊期末試卷含答案詳解【考試直接用】_第4頁
解析卷-滬科版9年級下冊期末試卷含答案詳解【考試直接用】_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、拋一枚質(zhì)地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.2、下面四個立體圖形中,從正面看是三角形的是()A. B. C. D.3、7個小正方體按如圖所示的方式擺放,則這個圖形的左視圖是()A.B. C.D.4、下列汽車標志中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.5、下面是由一些完全相同的小立方塊搭成的幾何體從三個方向看到的形狀圖.搭成這個幾何體所用的小立方塊的個數(shù)是()A.個 B.個 C.個 D.個6、如圖,將△OAB繞點O逆時針旋轉(zhuǎn)80°得到△OCD,若∠A的度數(shù)為110°,∠D的度數(shù)為40°,則∠AOD的度數(shù)是()A.50° B.60° C.40° D.30°7、擲一枚質(zhì)地均勻的骰子,向上一面的點數(shù)大于2且小于5的概率是()A. B. C. D.8、如圖,在中,,,將繞點C逆時針旋轉(zhuǎn)90°得到,則的度數(shù)為()A.105° B.120° C.135° D.150°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,若對角線AC=2,則的長為_____.2、點P為邊長為2的正方形ABCD內(nèi)一點,是等邊三角形,點M為BC中點,N是線段BP上一動點,將線段MN繞點M順時針旋轉(zhuǎn)60°得到線段MQ,連接AQ、PQ,則的最小值為______.3、如圖,正方形ABCD的邊長為1,⊙O經(jīng)過點C,CM為⊙O的直徑,且CM=1.過點M作⊙O的切線分別交邊AB,AD于點G,H.BD與CG,CH分別交于點E,F(xiàn),⊙O繞點C在平面內(nèi)旋轉(zhuǎn)(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個結(jié)論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點在同一個圓上;④四邊形CGAH面積的最大值為2.其中正確的結(jié)論有_____(填寫所有正確結(jié)論的序號).4、林業(yè)部門要考察某種幼樹在一定條件下的移植成活率,下表是這種幼樹在移植過程中的一組數(shù)據(jù):移植的棵數(shù)n10001500250040008000150002000030000成活的棵數(shù)m8651356222035007056131701758026430成活的頻率0.8650.9040.8880.8750.8820.8780.8790.881估計該種幼樹在此條件下移植成活的概率為_______.5、邊長相等、各內(nèi)角均為120°的六邊形ABCDEF在直角坐標系內(nèi)的位置如圖所示,,點B在原點,把六邊形ABCDEF沿x軸正半軸繞頂點按順時針方向,從點B開始逐次連續(xù)旋轉(zhuǎn),每次旋轉(zhuǎn)60°,經(jīng)過2021次旋轉(zhuǎn)之后,點B的坐標是_____________.6、如圖,在平面直角坐標系xOy中,P為x軸正半軸上一點.已知點,,為的外接圓.(1)點M的縱坐標為______;(2)當最大時,點P的坐標為______.7、一個五邊形共有__________條對角線.三、解答題(7小題,每小題0分,共計0分)1、隨著“新冠肺炎”疫情防控形勢日漸好轉(zhuǎn),各地開始復工復學,某校復學后成立“防疫志愿者服務隊”,設立四個“服務監(jiān)督崗”:①洗手監(jiān)督崗,②戴口罩監(jiān)督崗,③就餐監(jiān)督崗,④操場活動監(jiān)督崗.李老師和王老師報名參加了志愿者服務工作,學校將報名的志愿者隨機分配到四個監(jiān)督崗.(1)王老師被分配到“就餐監(jiān)督崗”的概率為;(2)用列表法或畫樹狀圖法,求李老師和王老師被分配到同一個監(jiān)督崗的概率.2、一個不透明的口袋中有4個完全相同的小球,把它們分別標號為1,2,3,4隨機摸取一個小球后,不放回,再隨機摸出一個小球,分別求下列事件的概率:(1)兩次取出的小球標號和為奇數(shù);(2)兩次取出的小球標號和為偶數(shù).3、如圖1,在平面直角坐標系中,二次函數(shù)的圖象經(jīng)過點,過點A作軸,做直線AC平行x軸,點D是二次函數(shù)的圖象與x軸的一個公共點(點D與點O不重合).(1)求點D的橫坐標(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達式.(3)在(2)的條件下,如圖2,P為OC的中點,在直線AC上取一點M,連接PM,做點C關(guān)于PM的對稱點N,①連接AN,求AN的最小值.②當點N落在拋物線的對稱軸上,求直線MN的函數(shù)表達式.4、如圖,已知在中,,D、E是BC邊上的點,將繞點A旋轉(zhuǎn),得到,連接.(1)當時,時,求證:;(2)當時,與有怎樣的數(shù)量關(guān)系?請寫出,并說明理由.(3)在(2)的結(jié)論下,當,BD與DE滿足怎樣的數(shù)量關(guān)系時,是等腰直角三角形?(直接寫出結(jié)論,不必證明)5、如圖,以四邊形的對角線為直徑作圓,圓心為,點、在上,過點作的延長線于點,已知平分.(1)求證:是切線;(2)若,,求的半徑和的長.6、元元同學在數(shù)學課上遇到這樣一個問題:如圖1,在平面直角坐標系xOy中,OA經(jīng)過坐標原點O,并與兩坐標軸分別交于B、C兩點,點B的坐標為,點D在上,且,求OA的半徑和圓心A的坐標.元元的做法如下,請你幫忙補全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據(jù)是①)∵,∴(依據(jù)是②).∵,.∴BC是的直徑(依據(jù)是③).∴∵,∴A的坐標為(④)的半徑為⑤7、在中,,,過點A作BC的垂線AD,垂足為D,E為線段DC上一動點(不與點C重合),連接AE,以點A為中心,將線段AE逆時針旋轉(zhuǎn)90°得到線段AF,連接BF,與直線AD交于點G.(1)如圖,當點E在線段CD上時,①依題意補全圖形,并直接寫出BC與CF的位置關(guān)系;②求證:點G為BF的中點.(2)直接寫出AE,BE,AG之間的數(shù)量關(guān)系.-參考答案-一、單選題1、B【分析】根據(jù)隨機擲一枚質(zhì)地均勻的硬幣三次,可以分別假設出三次情況,畫出樹狀圖即可.【詳解】解:隨機擲一枚質(zhì)地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點睛】本題主要考查了樹狀圖法求概率,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.2、C【分析】找到從正面看所得到的圖形為三角形即可.【詳解】解:A、主視圖為正方形,不符合題意;B、主視圖為圓,不符合題意;C、主視圖為三角形,符合題意;D、主視圖為長方形,不符合題意.故選:C.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.3、C【分析】細心觀察圖中幾何體擺放的位置,根據(jù)左視圖是從左面看到的圖象判定則可.【詳解】解:從左邊看,是左邊3個正方形,右邊一個正方形.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.4、C【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:C.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.5、D【分析】從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個正方體,第二層有1個正方體,所以搭成這個幾何體所用的小立方塊的個數(shù)是6,故選D.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.6、A【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)求解再利用三角形的內(nèi)角和定理求解再利用角的和差關(guān)系可得答案.【詳解】解:將△OAB繞點O逆時針旋轉(zhuǎn)80°得到△OCD,∠A的度數(shù)為110°,∠D的度數(shù)為40°,故選A【點睛】本題考查的是三角形的內(nèi)角和定理的應用,旋轉(zhuǎn)的性質(zhì),掌握“旋轉(zhuǎn)前后的對應角相等”是解本題的關(guān)鍵.7、C【分析】根據(jù)骰子各面上的數(shù)字得到向上一面的點數(shù)可能是3或4,利用概率公式計算即可.【詳解】解:一枚質(zhì)地均勻的骰子共有六個面,點數(shù)分別為1,2,3,4,5,6,∴點數(shù)大于2且小于5的有3或4,∴向上一面的點數(shù)大于2且小于5的概率是=,故選:C.【點睛】此題考查了求簡單事件的概率,正確掌握概率的計算公式是解題的關(guān)鍵.8、B【分析】由題意易得,然后根據(jù)三角形外角的性質(zhì)可求解.【詳解】解:由旋轉(zhuǎn)的性質(zhì)可得:,∴;故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì)是解題的關(guān)鍵.二、填空題1、【分析】連接OB,交AC于點D,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得四邊形OABC為菱形,根據(jù)菱形的性質(zhì)可得:,,,根據(jù)等邊三角形的判定得出為等邊三角形,由此得出,在直角三角形中利用勾股定理即可確定圓的半徑,然后代入弧長公式求解即可.【詳解】解:如圖所示,連接OB,交AC于點D,∵四邊形OABC為平行四邊形,,∴四邊形OABC為菱形,∴,,,∵,∴為等邊三角形,∴,∴,在中,設,則,∴,即,解得:或(舍去),∴的長為:,故答案為:.【點睛】題目主要考查菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,弧長公式等,熟練掌握各個定理和公式是解題關(guān)鍵.2、【分析】如圖,取的中點,連接,,,證明,進而證明在上運動,且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點,連接,,,將線段MN繞點M順時針旋轉(zhuǎn)60°得到線段MQ,,是等邊三角形,,是的中點,是的中點是等邊三角形,即在和中,又是的中點點在上是的中點,是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線的性質(zhì)與判定,根據(jù)以上知識轉(zhuǎn)化線段是解題的關(guān)鍵.3、②③④【分析】根據(jù)切線的性質(zhì),正方形的性質(zhì),通過三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個結(jié)論;運用對角互補的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點P,連接PA,則PA+PC≥AC,當PC最大時,PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時,PA最小,計算即可.【詳解】∵GH是⊙O的切線,M為切點,且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無法確定HD=2BG,故①錯誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對角互補的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點在同一個圓上,故③正確;∵正方形ABCD的邊長為1,∴=1=,∠GAH=90°,AC=取GH的中點P,連接PA,∴GH=2PA,∴=,∴當PA取最小值時,有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當PC最大時,PA最小,∵直徑是圓中最大的弦,∴PC=1時,PA最小,∴當A,P,C三點共線時,且PC最大時,PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點睛】本題考查了切線的性質(zhì),直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點共圓,正方形的性質(zhì),熟練掌握圓的性質(zhì),靈活運用直角三角形的性質(zhì),線段最短原理是解題的關(guān)鍵.4、0.880【分析】大量重復實驗的情況下,當頻率呈現(xiàn)一定的穩(wěn)定性時,可以用這一穩(wěn)定值估計事件發(fā)生的概率,據(jù)此可解.【詳解】解:大量重復實驗的情況下,當頻率呈現(xiàn)一定的穩(wěn)定性時,可以用這一穩(wěn)定值估計事件發(fā)生的概率,從上表可以看出,頻率成活的頻率,即穩(wěn)定于0.880左右,∴估計這種幼樹移植成活率的概率約為0.88.故答案為:0.880.【點睛】此題主要考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.5、【分析】根據(jù)旋轉(zhuǎn)找出規(guī)律后再確定坐標.【詳解】∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,∴每6次翻轉(zhuǎn)為一個循環(huán)組循環(huán),∵,∴經(jīng)過2021次翻轉(zhuǎn)為第337循環(huán)組的第5次翻轉(zhuǎn),點B在開始時點C的位置,∵,∴,∴翻轉(zhuǎn)前進的距離為:,如圖,過點B作BG⊥x于G,則∠BAG=60°,∴,,∴,∴點B的坐標為.故答案為:.【點睛】題考查旋轉(zhuǎn)的性質(zhì)與正多邊形,由題意找出規(guī)律是解題的關(guān)鍵.6、5(4,0)【分析】(1)根據(jù)點M在線段AB的垂直平分線上求解即可;(2)點P在⊙M切點處時,最大,而四邊形OPMD是矩形,由勾股定理求解即可.【詳解】解:(1)∵⊙M為△ABP的外接圓,∴點M在線段AB的垂直平分線上,∵A(0,2),B(0,8),∴點M的縱坐標為:,故答案為:5;(2)過點,,作⊙M與x軸相切,則點M在切點處時,最大,理由:若點是x軸正半軸上異于切點P的任意一點,設交⊙M于點E,連接AE,則∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即點P在切點處時,∠APB最大,∵⊙M經(jīng)過點A(0,2)、B(0,8),∴點M在線段AB的垂直平分線上,即點M在直線y=5上,∵⊙M與x軸相切于點P,MP⊥x軸,從而MP=5,即⊙M的半徑為5,設AB的中點為D,連接MD、AM,如上圖,則MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四邊形OPMD是矩形,從而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴點P的坐標為(4,0),故答案為:(4,0).【點睛】本題考查了切線的性質(zhì),線段垂直平分線的性質(zhì),矩形的判定及勾股定理,正確作出圖形是解題的關(guān)鍵.7、5【分析】由n邊形的對角線有:條,再把代入計算即可得.【詳解】解:邊形共有條對角線,五邊形共有條對角線.故答案為:5【點睛】本題考查的是多邊形的對角線的條數(shù),掌握n邊形的對角線的條數(shù)是解題的關(guān)鍵.三、解答題1、(1);(2)李老師和王老師被分配到同一個監(jiān)督崗的概率為.【分析】(1)直接利用概率公式計算;(2)畫樹狀圖展示所有16種等可能的結(jié)果,找出李老師和王老師被分配到同一個監(jiān)督崗的結(jié)果數(shù),然后根據(jù)概率公式計算.【詳解】解:(1)因為設立了四個“服務監(jiān)督崗”:“洗手監(jiān)督崗”,“戴口罩監(jiān)督崗”,“戴口罩監(jiān)督崗”,“就餐監(jiān)督崗”而“操場活動監(jiān)督崗”是其中之一,∴王老師被分配到“就餐監(jiān)督崗”的概率=;故答案為:;(2)畫樹狀圖為:由樹狀圖可知共有16種等可能的結(jié)果,其中李老師和王老師被分配到同一個監(jiān)督崗的結(jié)果數(shù)為4,∴李老師和王老師被分配到同一個監(jiān)督崗的概率==.【點睛】本題考查了列舉法求解概率,列表法與樹狀圖法求解概率:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.2、(1);(2).【分析】(1)列出表格展示所有可能的結(jié)果,根據(jù)表格即可知共有12種可能的情況,再找到兩次取出的小球標號和為奇數(shù)的情況數(shù),利用概率公式,即可求解;(2)找出兩次取出的小球標號和為偶數(shù)的情況數(shù),再利用概率公式,即可求解.(1)解:根據(jù)題意列出表格,如下表:根據(jù)表格可知:共有12種可能的情況,其中兩次取出的小球標號和為奇數(shù)的情況有8種,故兩次取出的小球標號和為奇數(shù)的概率為;(2)根據(jù)表格可知:兩次取出的小球標號和為偶數(shù)的情況有4種.故兩次取出的小球標號和為偶數(shù)的概率為.123411+2=3,奇數(shù)1+3=4,偶數(shù)1+4=5,奇數(shù)22+1=3,奇數(shù)2+3=5,奇數(shù)2+4=6,偶數(shù)33+1=4,偶數(shù)3+2=5,奇數(shù)3+4=7,奇數(shù)44+1=5,奇數(shù)4+2=6,偶數(shù)4+3=7,奇數(shù)【點睛】3、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點N在以P為圓心,以2為半徑的圓上運動,當P、N、A同側(cè)且共線時,AN最小,用勾股定理計算即可.②分點M在對稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點D的橫坐標為2b.(2)設w=,∵點D的橫坐標為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當b=1時,w有最大值,最大值為4,此時拋物線的解析式為.(3)①∵點A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點,∴OP=PC=2,∵點C關(guān)于PM的對稱點N,∴OP=PC=PN=2,∴點N在以P為圓心,以2為半徑的圓上運動,如圖所示,當P、N、A同側(cè)且共線時,AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當點N落在拋物線的對稱軸上,且M在對稱軸的左側(cè),如圖所示,設對稱軸與AC交于點H,交x軸于點Q,過點P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點N(1,2+),設CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點M(4-2,4),設直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當點N落在拋物線的對稱軸上,且M在對稱軸的右側(cè),如圖所示,設對稱軸與AC交于點T,交x軸于點R,過點P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點N(1,2-),TN=2+設CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點M(4+2,4),設直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點睛】本題考查了拋物線與x軸的交點,二次函數(shù)的最值,圓的基本性質(zhì),待定系數(shù)法確定一次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,熟練掌握圓的性質(zhì),拋物線的性質(zhì),靈活運用對稱的思想和勾股定理是解題的關(guān)鍵.4、(1)見解析;(2)∠DAE=∠BAC,見解析;(3)DE=BD,見解析【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,從而得到∠DAE=∠D′AE,再利用“邊角邊”證明△ADE和△AD′E全等,根據(jù)全等三角形對應邊相等證明即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,再利用“邊邊邊”證明△ADE和△AD′E全等,然后根據(jù)全等三角形對應角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,從而得解;(3)求出∠D′CE=90°,然后根據(jù)等腰直角三角形斜邊等于直角邊的倍可得D′E=CD′,再根據(jù)旋轉(zhuǎn)的性質(zhì)解答即可.【詳解】(1)證明:∵△ABD繞點A旋轉(zhuǎn)得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC?∠DAE=120°?60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中,,∴△ADE≌△AD′E(SAS),∴DE=D′E;(2)解:∠DAE=∠BAC.理由如下:在△ADE和△AD′E中,,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D′AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠D′CE=45°+45°=90°,∵△D′EC是等腰直角三角形,∴D′E=CD′,由(2)DE=D′E,∵△ABD繞點A旋轉(zhuǎn)得到△ACD′,∴BD=C′D,∴DE=BD.【點睛】本題考查了幾何變換的綜合題,旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),熟記旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小找出三角形全等的條件是解題的關(guān)鍵.5、(1)證明見解析(2)【分析】(1)連接OA,根據(jù)已知條件證明OA⊥AE即可解決問題;(2)取CD中點F,連接OF,根據(jù)垂徑定理可得OF⊥CD,所以四邊形AEFO是矩形,利用勾股定理即可求出結(jié)果.(1)證明:如圖,連接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠ADE=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠DAE+∠OAD=90°,∴OA⊥AE,∴AE是⊙O切線;(2)解:如圖,取CD中點F,連接OF,∴OF⊥CD于點F.∴四邊形AEFO是矩形,∵CD=6,∴DF=FC=3.在Rt△OFD中,OF=AE=4,∴,在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,∴,∴AD的長是.【點睛】本題考查了切線的判定與性質(zhì),垂徑定理,圓周角定理,勾股定理,解決本題的關(guān)鍵是掌握切線的判定與性質(zhì).6、垂徑定理,圓周角定理,圓周角定理,(1,),2【分析】根據(jù)垂徑定理,圓周角定理依次分析解答.【詳解】解:如圖2,連接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依據(jù)是垂徑定理)∵,∴(依據(jù)是圓周角定理).∵,.∴BC是的直徑(依據(jù)是圓周角定理).∴,∵,∴A的坐標為(1,),的半徑為2,故答案為:垂徑定理,圓周角定理,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論