版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年AI安全事件響應(yīng)報(bào)告試題(含答案與解析)
一、單選題(共15題)
1.以下哪種技術(shù)可以實(shí)現(xiàn)模型在保持較高準(zhǔn)確率的同時(shí)顯著減少參數(shù)數(shù)量?
A.模型壓縮
B.模型并行
C.模型剪枝
D.模型蒸餾
2.在AI安全事件響應(yīng)中,用于檢測(cè)和分類惡意行為的關(guān)鍵技術(shù)是:
A.異常檢測(cè)
B.主動(dòng)學(xué)習(xí)
C.模型剪枝
D.數(shù)據(jù)增強(qiáng)
3.在對(duì)抗性攻擊防御中,以下哪種方法可以有效地保護(hù)模型?
A.梯度下降
B.模型對(duì)抗訓(xùn)練
C.輸入正則化
D.數(shù)據(jù)清洗
4.在分布式訓(xùn)練框架中,以下哪種策略可以顯著提高訓(xùn)練效率?
A.數(shù)據(jù)并行
B.模型并行
C.梯度累積
D.模型壓縮
5.以下哪項(xiàng)不是聯(lián)邦學(xué)習(xí)的主要優(yōu)勢(shì)?
A.隱私保護(hù)
B.通信效率
C.計(jì)算資源節(jié)約
D.硬件要求降低
6.在知識(shí)蒸餾過(guò)程中,以下哪種損失函數(shù)用于衡量源模型和蒸餾模型之間的差異?
A.真實(shí)損失
B.蒸餾損失
C.對(duì)比損失
D.分類損失
7.在AI安全事件響應(yīng)中,用于評(píng)估模型魯棒性的關(guān)鍵指標(biāo)是:
A.準(zhǔn)確率
B.精確率
C.召回率
D.F1分?jǐn)?shù)
8.在模型量化過(guò)程中,以下哪種方法可以減少量化后的模型大小而不顯著影響性能?
A.INT8量化
B.INT4量化
C.INT16量化
D.INT32量化
9.在持續(xù)預(yù)訓(xùn)練策略中,以下哪種方法可以幫助模型更好地泛化到新任務(wù)?
A.數(shù)據(jù)增強(qiáng)
B.多任務(wù)學(xué)習(xí)
C.遷移學(xué)習(xí)
D.預(yù)訓(xùn)練模型微調(diào)
10.在AI安全事件響應(yīng)中,用于評(píng)估模型公平性的關(guān)鍵指標(biāo)是:
A.偏見(jiàn)檢測(cè)
B.異常檢測(cè)
C.模型壓縮
D.數(shù)據(jù)清洗
11.在AI倫理準(zhǔn)則中,以下哪項(xiàng)原則不是AI設(shè)計(jì)的基本原則?
A.透明度
B.責(zé)任
C.安全性
D.可用性
12.在云邊端協(xié)同部署中,以下哪種技術(shù)可以用于優(yōu)化資源分配?
A.模型壓縮
B.模型并行
C.容器化部署
D.模型剪枝
13.在AI訓(xùn)練任務(wù)調(diào)度中,以下哪種方法可以提高訓(xùn)練效率?
A.優(yōu)先級(jí)隊(duì)列
B.動(dòng)態(tài)資源分配
C.負(fù)載均衡
D.數(shù)據(jù)并行
14.在模型線上監(jiān)控中,以下哪種技術(shù)可以用于實(shí)時(shí)檢測(cè)模型性能問(wèn)題?
A.監(jiān)控日志
B.模型指標(biāo)
C.異常檢測(cè)
D.數(shù)據(jù)清洗
15.在AI倫理準(zhǔn)則中,以下哪項(xiàng)不是AI安全事件響應(yīng)中應(yīng)考慮的因素?
A.模型公平性
B.模型可解釋性
C.模型性能
D.數(shù)據(jù)隱私
答案:
1.C
2.A
3.B
4.A
5.D
6.B
7.D
8.A
9.C
10.A
11.D
12.C
13.B
14.B
15.C
解析:
1.C:模型剪枝通過(guò)移除不重要的連接或神經(jīng)元,減少模型參數(shù)數(shù)量,同時(shí)保持較高準(zhǔn)確率。
2.A:異常檢測(cè)用于檢測(cè)和分類惡意行為,如數(shù)據(jù)泄露、攻擊等。
3.B:模型對(duì)抗訓(xùn)練通過(guò)在訓(xùn)練過(guò)程中添加對(duì)抗樣本,提高模型的魯棒性。
4.A:數(shù)據(jù)并行將數(shù)據(jù)分布在多個(gè)節(jié)點(diǎn)上并行處理,提高訓(xùn)練效率。
5.D:聯(lián)邦學(xué)習(xí)可以減少硬件要求,因?yàn)樗恍枰写鎯?chǔ)大量數(shù)據(jù)。
6.B:蒸餾損失衡量源模型和蒸餾模型之間的差異,幫助蒸餾模型學(xué)習(xí)到源模型的特征。
7.D:F1分?jǐn)?shù)結(jié)合了精確率和召回率,是評(píng)估模型魯棒性的關(guān)鍵指標(biāo)。
8.A:INT8量化通過(guò)將FP32參數(shù)映射到INT8范圍,減少模型大小而不顯著影響性能。
9.C:遷移學(xué)習(xí)利用預(yù)訓(xùn)練模型在新任務(wù)上的性能,幫助模型更好地泛化。
10.A:偏見(jiàn)檢測(cè)用于評(píng)估模型在處理不同群體時(shí)是否存在偏見(jiàn)。
11.D:可用性不是AI設(shè)計(jì)的基本原則,其他三項(xiàng)(透明度、責(zé)任、安全性)是。
12.C:容器化部署可以優(yōu)化資源分配,提高系統(tǒng)性能。
13.B:動(dòng)態(tài)資源分配根據(jù)任務(wù)需求動(dòng)態(tài)調(diào)整資源分配,提高訓(xùn)練效率。
14.B:模型指標(biāo)可以實(shí)時(shí)檢測(cè)模型性能問(wèn)題,如準(zhǔn)確率、召回率等。
15.C:模型性能是AI安全事件響應(yīng)中應(yīng)考慮的因素之一,其他三項(xiàng)(模型公平性、模型可解釋性、數(shù)據(jù)隱私)也是重要的考慮因素。
二、多選題(共10題)
1.在分布式訓(xùn)練框架中,以下哪些技術(shù)可以提升訓(xùn)練效率?(多選)
A.數(shù)據(jù)并行
B.模型并行
C.梯度累積
D.分布式緩存
E.模型壓縮
答案:ABCD
解析:分布式訓(xùn)練框架中,數(shù)據(jù)并行(A)和模型并行(B)可以并行處理數(shù)據(jù)和模型,梯度累積(C)允許將多個(gè)批次的梯度累積后更新參數(shù),分布式緩存(D)可以減少數(shù)據(jù)傳輸延遲,模型壓縮(E)可以減少模型大小和計(jì)算量,從而提升訓(xùn)練效率。
2.以下哪些技術(shù)可以用于對(duì)抗性攻擊防御?(多選)
A.梯度正則化
B.模型對(duì)抗訓(xùn)練
C.輸入正則化
D.數(shù)據(jù)清洗
E.模型剪枝
答案:ABC
解析:對(duì)抗性攻擊防御中,梯度正則化(A)和輸入正則化(C)可以減少對(duì)抗樣本的影響,模型對(duì)抗訓(xùn)練(B)通過(guò)訓(xùn)練模型對(duì)對(duì)抗樣本的魯棒性,數(shù)據(jù)清洗(D)可以去除潛在的有害數(shù)據(jù),而模型剪枝(E)主要用于模型壓縮,不是直接用于防御對(duì)抗攻擊。
3.在持續(xù)預(yù)訓(xùn)練策略中,以下哪些方法可以幫助模型更好地泛化?(多選)
A.數(shù)據(jù)增強(qiáng)
B.多任務(wù)學(xué)習(xí)
C.遷移學(xué)習(xí)
D.模型蒸餾
E.知識(shí)蒸餾
答案:ABC
解析:持續(xù)預(yù)訓(xùn)練策略中,數(shù)據(jù)增強(qiáng)(A)可以增加訓(xùn)練數(shù)據(jù)的多樣性,多任務(wù)學(xué)習(xí)(B)讓模型學(xué)習(xí)多個(gè)相關(guān)任務(wù),遷移學(xué)習(xí)(C)利用預(yù)訓(xùn)練模型在新任務(wù)上的性能,而模型蒸餾(D)和知識(shí)蒸餾(E)都是將知識(shí)從大模型轉(zhuǎn)移到小模型,有助于泛化。
4.以下哪些技術(shù)可以用于模型量化?(多選)
A.INT8量化
B.INT4量化
C.INT16量化
D.FP16量化
E.知識(shí)蒸餾
答案:ACD
解析:模型量化通過(guò)減少模型參數(shù)的精度來(lái)減小模型大小和加速推理,INT8量化(A)、INT16量化(C)和FP16量化(D)都是常用的量化方法,而INT4量化(B)相對(duì)較少使用,知識(shí)蒸餾(E)是一種將知識(shí)從大模型轉(zhuǎn)移到小模型的技術(shù),不屬于量化。
5.在云邊端協(xié)同部署中,以下哪些技術(shù)可以提高資源利用率和響應(yīng)速度?(多選)
A.容器化部署
B.模型壓縮
C.分布式緩存
D.模型并行
E.低代碼平臺(tái)應(yīng)用
答案:ABC
解析:云邊端協(xié)同部署中,容器化部署(A)可以提高資源利用率和部署效率,模型壓縮(B)可以減小模型大小,分布式緩存(C)可以減少數(shù)據(jù)傳輸延遲,模型并行(D)可以加速推理,而低代碼平臺(tái)應(yīng)用(E)主要用于開(kāi)發(fā),不是直接用于部署。
6.在聯(lián)邦學(xué)習(xí)中,以下哪些技術(shù)可以保護(hù)用戶隱私?(多選)
A.加密
B.隱私同態(tài)加密
C.差分隱私
D.模型剪枝
E.數(shù)據(jù)脫敏
答案:ABC
解析:聯(lián)邦學(xué)習(xí)中,加密(A)、隱私同態(tài)加密(B)和差分隱私(C)都是保護(hù)用戶隱私的關(guān)鍵技術(shù),模型剪枝(D)和數(shù)據(jù)脫敏(E)主要用于模型壓縮和數(shù)據(jù)處理,不是直接用于隱私保護(hù)。
7.在AI倫理準(zhǔn)則中,以下哪些原則是AI安全事件響應(yīng)中應(yīng)考慮的?(多選)
A.公平性
B.可解釋性
C.安全性
D.透明度
E.可控性
答案:ABCD
解析:AI倫理準(zhǔn)則中,公平性(A)、可解釋性(B)、安全性(C)和透明度(D)是AI安全事件響應(yīng)中應(yīng)考慮的關(guān)鍵原則,而可控性(E)雖然重要,但不是AI倫理準(zhǔn)則中的標(biāo)準(zhǔn)原則。
8.在模型服務(wù)高并發(fā)優(yōu)化中,以下哪些技術(shù)可以提高系統(tǒng)性能?(多選)
A.負(fù)載均衡
B.緩存機(jī)制
C.API限流
D.數(shù)據(jù)庫(kù)優(yōu)化
E.模型并行
答案:ABCD
解析:模型服務(wù)高并發(fā)優(yōu)化中,負(fù)載均衡(A)、緩存機(jī)制(B)、API限流(C)和數(shù)據(jù)庫(kù)優(yōu)化(D)都是提高系統(tǒng)性能的關(guān)鍵技術(shù),模型并行(E)主要用于訓(xùn)練階段,不是直接用于服務(wù)優(yōu)化。
9.在AIGC內(nèi)容生成中,以下哪些技術(shù)可以用于生成高質(zhì)量的內(nèi)容?(多選)
A.文本生成模型
B.圖像生成模型
C.視頻生成模型
D.知識(shí)蒸餾
E.數(shù)據(jù)增強(qiáng)
答案:ABCE
解析:AIGC內(nèi)容生成中,文本生成模型(A)、圖像生成模型(B)和視頻生成模型(C)是生成內(nèi)容的核心技術(shù),知識(shí)蒸餾(D)可以將知識(shí)從大模型轉(zhuǎn)移到小模型,數(shù)據(jù)增強(qiáng)(E)可以增加訓(xùn)練數(shù)據(jù)的多樣性,從而生成高質(zhì)量的內(nèi)容。
10.在AI倫理準(zhǔn)則中,以下哪些措施可以增強(qiáng)模型的魯棒性?(多選)
A.模型對(duì)抗訓(xùn)練
B.異常檢測(cè)
C.數(shù)據(jù)清洗
D.模型剪枝
E.算法透明度評(píng)估
答案:ABCD
解析:AI倫理準(zhǔn)則中,模型對(duì)抗訓(xùn)練(A)可以提高模型對(duì)對(duì)抗樣本的魯棒性,異常檢測(cè)(B)可以識(shí)別和響應(yīng)異常行為,數(shù)據(jù)清洗(C)可以去除潛在的有害數(shù)據(jù),模型剪枝(D)可以減少模型復(fù)雜度,而算法透明度評(píng)估(E)可以幫助理解模型的決策過(guò)程,但不是直接增強(qiáng)模型魯棒性的措施。
三、填空題(共15題)
1.分布式訓(xùn)練中,數(shù)據(jù)并行策略通過(guò)___________將數(shù)據(jù)集拆分到不同設(shè)備。
答案:水平劃分
2.參數(shù)高效微調(diào)(LoRA/QLoRA)中,LoRA通過(guò)在原模型參數(shù)上添加___________來(lái)生成微調(diào)參數(shù)。
答案:低秩近似
3.持續(xù)預(yù)訓(xùn)練策略中,通過(guò)___________技術(shù)可以持續(xù)更新模型知識(shí)。
答案:增量學(xué)習(xí)
4.對(duì)抗性攻擊防御中,一種常見(jiàn)的防御技術(shù)是使用___________正則化來(lái)減少對(duì)抗樣本的影響。
答案:對(duì)抗
5.推理加速技術(shù)中,___________通過(guò)降低模型精度來(lái)減少計(jì)算量和內(nèi)存使用。
答案:量化
6.模型并行策略中,將模型的不同部分部署到不同的設(shè)備上稱為_(kāi)__________。
答案:模型分割
7.云邊端協(xié)同部署中,邊緣計(jì)算通常用于___________場(chǎng)景,以提高響應(yīng)速度。
答案:實(shí)時(shí)性
8.知識(shí)蒸餾中,源模型通常具有___________,而學(xué)生模型通常具有___________。
答案:復(fù)雜度高、參數(shù)數(shù)量多
9.模型量化(INT8/FP16)中,INT8量化將模型參數(shù)的精度從___________降低到___________。
答案:FP32、INT8
10.結(jié)構(gòu)剪枝中,___________剪枝通過(guò)移除不重要的連接或神經(jīng)元來(lái)減少模型參數(shù)。
答案:權(quán)重
11.稀疏激活網(wǎng)絡(luò)設(shè)計(jì)中,通過(guò)引入___________來(lái)降低模型計(jì)算量。
答案:稀疏性
12.評(píng)估指標(biāo)體系(困惑度/準(zhǔn)確率)中,___________通常用于衡量模型對(duì)未知數(shù)據(jù)的預(yù)測(cè)能力。
答案:困惑度
13.倫理安全風(fēng)險(xiǎn)中,___________是AI系統(tǒng)可能帶來(lái)的公平性問(wèn)題。
答案:偏見(jiàn)
14.Transformer變體(BERT/GPT)中,___________模型以預(yù)訓(xùn)練語(yǔ)言模型為基礎(chǔ),用于生成文本。
答案:GPT
15.腦機(jī)接口算法中,___________技術(shù)可以用于解碼大腦活動(dòng)。
答案:腦電圖(EEG)
四、判斷題(共10題)
1.分布式訓(xùn)練中,數(shù)據(jù)并行的通信開(kāi)銷與設(shè)備數(shù)量呈線性增長(zhǎng)。
正確()不正確()
答案:不正確
解析:分布式訓(xùn)練中,數(shù)據(jù)并行的通信開(kāi)銷通常與設(shè)備數(shù)量成平方或立方關(guān)系,因?yàn)槊總€(gè)設(shè)備都需要接收所有其他設(shè)備的梯度更新。這可以通過(guò)使用參數(shù)服務(wù)器或梯度累積等技術(shù)來(lái)優(yōu)化。
2.參數(shù)高效微調(diào)(LoRA/QLoRA)中,LoRA總是比QLoRA更高效。
正確()不正確()
答案:不正確
解析:LoRA(Low-RankAdaptation)和QLoRA(QuantizedLow-RankAdaptation)各有優(yōu)勢(shì)。LoRA適用于小模型,而QLoRA通過(guò)量化可以減少內(nèi)存使用,但可能會(huì)影響性能。具體效率取決于模型大小和任務(wù)類型。
3.持續(xù)預(yù)訓(xùn)練策略中,預(yù)訓(xùn)練模型越大,泛化能力越好。
正確()不正確()
答案:不正確
解析:雖然大模型通常有更好的泛化能力,但預(yù)訓(xùn)練模型過(guò)大可能會(huì)導(dǎo)致過(guò)擬合和計(jì)算資源消耗增加。模型大小與泛化能力之間沒(méi)有簡(jiǎn)單的線性關(guān)系。
4.對(duì)抗性攻擊防御中,對(duì)抗樣本的生成通常比攻擊模型本身更困難。
正確()不正確()
答案:正確
解析:對(duì)抗樣本的生成需要精確地理解模型的行為,通常比直接攻擊模型更復(fù)雜。攻擊者需要設(shè)計(jì)對(duì)抗樣本以繞過(guò)模型的防御機(jī)制。
5.模型量化(INT8/FP16)中,INT8量化總是比FP16量化更精確。
正確()不正確()
答案:不正確
解析:INT8量化(8位整數(shù))比FP16量化(16位浮點(diǎn)數(shù))精度低,但I(xiàn)NT8量化可以顯著減少模型大小和計(jì)算量,適用于移動(dòng)和嵌入式設(shè)備。
6.云邊端協(xié)同部署中,邊緣計(jì)算總是比云端計(jì)算更安全。
正確()不正確()
答案:不正確
解析:邊緣計(jì)算雖然可以減少數(shù)據(jù)傳輸延遲,但邊緣設(shè)備可能更容易受到物理攻擊和惡意軟件的影響,因此安全性取決于具體部署和環(huán)境。
7.知識(shí)蒸餾中,教師模型通常比學(xué)生模型更復(fù)雜。
正確()不正確()
答案:正確
解析:知識(shí)蒸餾過(guò)程中,教師模型通常是完整的、復(fù)雜的模型,而學(xué)生模型通常是簡(jiǎn)化版或小規(guī)模模型,以學(xué)習(xí)教師模型的知識(shí)。
8.異常檢測(cè)中,基于模型的異常檢測(cè)方法通常比基于統(tǒng)計(jì)的方法更準(zhǔn)確。
正確()不正確()
答案:不正確
解析:基于模型的異常檢測(cè)和基于統(tǒng)計(jì)的方法各有優(yōu)缺點(diǎn)。基于模型的異常檢測(cè)可能更容易受到模型偏差的影響,而基于統(tǒng)計(jì)的方法可能更魯棒。
9.聯(lián)邦學(xué)習(xí)隱私保護(hù)中,差分隱私是唯一一種可以保護(hù)用戶隱私的技術(shù)。
正確()不正確()
答案:不正確
解析:差分隱私是一種保護(hù)用戶隱私的技術(shù),但不是唯一的。還有其他技術(shù),如同態(tài)加密和隱私同態(tài)加密,也可以用于保護(hù)用戶隱私。
10.模型線上監(jiān)控中,實(shí)時(shí)監(jiān)控總是比離線監(jiān)控更重要。
正確()不正確()
答案:不正確
解析:實(shí)時(shí)監(jiān)控和離線監(jiān)控各有用途。實(shí)時(shí)監(jiān)控可以快速響應(yīng)問(wèn)題,而離線監(jiān)控可以提供更全面的性能和歷史數(shù)據(jù)分析。兩者都是重要的監(jiān)控策略。
五、案例分析題(共2題)
案例1.某金融科技公司計(jì)劃部署一款基于深度學(xué)習(xí)的反欺詐系統(tǒng),該系統(tǒng)需要實(shí)時(shí)處理大量交易數(shù)據(jù),并對(duì)交易行為進(jìn)行實(shí)時(shí)風(fēng)險(xiǎn)評(píng)估。由于系統(tǒng)部署在移動(dòng)端設(shè)備上,設(shè)備資源有限,內(nèi)存僅為4GB,且對(duì)模型的推理速度有嚴(yán)格要求。
問(wèn)題:針對(duì)該場(chǎng)景,設(shè)計(jì)一個(gè)模型壓縮和加速方案,并說(shuō)明實(shí)施步驟和預(yù)期效果。
問(wèn)題定位:
1.設(shè)備內(nèi)存有限(4GB),需要模型壓縮以適應(yīng)內(nèi)存限制。
2.對(duì)模型的推理速度有嚴(yán)格要求,需要模型加速以提升性能。
解決方案設(shè)計(jì):
1.模型量化:
-實(shí)施步驟:
1.使用INT8量化將模型參數(shù)從FP32轉(zhuǎn)換為INT8,減少模型大小。
2.使用量化感知訓(xùn)練來(lái)保證量化后的模型精度。
-預(yù)期效果:模型大小減少約75%,推理速度提升約2倍。
2.模型剪枝:
-實(shí)施步驟:
1.使用結(jié)構(gòu)化剪枝移除不重要的連接或神經(jīng)元。
2.使用非結(jié)構(gòu)化剪枝移除權(quán)重較小的連接。
-預(yù)期效果:模型大小進(jìn)一步減少,推理速度提升約1.5倍。
3.模型蒸餾:
-實(shí)施步驟:
1.使用預(yù)訓(xùn)練的大模型作為教師模型。
2.訓(xùn)練小模型(學(xué)生模型)來(lái)學(xué)習(xí)教師模型的知識(shí)。
-預(yù)期效
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GB-T 40604-2021新能源場(chǎng)站調(diào)度運(yùn)行信息交換技術(shù)要求》專題研究報(bào)告
- 《GBT 35796-2017 養(yǎng)老機(jī)構(gòu)服務(wù)質(zhì)量基本規(guī)范》專題研究報(bào)告
- 《GB-T 17215.941-2012電測(cè)量設(shè)備 可信性 第41部分:可靠性預(yù)測(cè)》專題研究報(bào)告
- 2026年河南省駐馬店地區(qū)單招職業(yè)傾向性考試題庫(kù)及參考答案詳解一套
- 云計(jì)算信息服務(wù)合同
- 智能電網(wǎng)工程師崗位招聘考試試卷及答案
- 2025年休閑健身服務(wù)項(xiàng)目發(fā)展計(jì)劃
- 排尿異常護(hù)理查房
- 遼寧省2025秋九年級(jí)英語(yǔ)全冊(cè)Unit5Whataretheshirtsmadeof課時(shí)1SectionA(1a-2d)課件新版人教新目標(biāo)版
- 員工成長(zhǎng)路徑
- DB32T 5124.3-2025 臨床護(hù)理技術(shù)規(guī)范 第3部分:成人危重癥患者有創(chuàng)動(dòng)脈血壓監(jiān)測(cè)
- 松陵一中分班試卷及答案
- 《小米廣告宣傳冊(cè)》課件
- 勞務(wù)派遣公司工作方案
- 物理趣味題目試題及答案
- 華師大版數(shù)學(xué)七年級(jí)上冊(cè)《4.3 立體圖形的表面展開(kāi)圖》聽(tīng)評(píng)課記錄
- 2023-2024學(xué)年四川省成都市高二上學(xué)期期末調(diào)研考試地理試題(解析版)
- 陜西單招數(shù)學(xué)試題及答案
- 應(yīng)收賬款債權(quán)轉(zhuǎn)讓協(xié)議
- 四川省宜賓市長(zhǎng)寧縣2024-2025學(xué)年九年級(jí)上學(xué)期期末化學(xué)試題(含答案)
- 可行性報(bào)告商業(yè)計(jì)劃書(shū)
評(píng)論
0/150
提交評(píng)論