版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
一、解答題1.在平面直角坐標(biāo)系中,已知長方形,點,.(1)如圖,有一動點在第二象限的角平分線上,若,求的度數(shù);(2)若把長方形向上平移,得到長方形.①在運動過程中,求的面積與的面積之間的數(shù)量關(guān)系;②若,求的面積與的面積之比.2.直線AB∥CD,點P為平面內(nèi)一點,連接AP,CP.(1)如圖①,點P在直線AB,CD之間,當(dāng)∠BAP=60°,∠DCP=20°時,求∠APC的度數(shù);(2)如圖②,點P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,點P在直線CD下方,當(dāng)∠BAK=∠BAP,∠DCK=∠DCP時,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.3.如圖,已知直線射線CD,.P是射線EB上一動點,過點P作PQEC交射線CD于點Q,連接CP.作,交直線AB于點F,CG平分.(1)若點P,F(xiàn),G都在點E的右側(cè),求的度數(shù);(2)若點P,F(xiàn),G都在點E的右側(cè),,求的度數(shù);(3)在點P的運動過程中,是否存在這樣的情形,使?若存在,求出的度數(shù);若不存在,請說明理由.4.已知,點為平面內(nèi)一點,于.(1)如圖1,求證:;(2)如圖2,過點作的延長線于點,求證:;(3)如圖3,在(2)問的條件下,點、在上,連接、、,且平分,平分,若,,求的度數(shù).5.已知直線,點P為直線、所確定的平面內(nèi)的一點.(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點E在射線上,過點E作,作,點G在直線上,作的平分線交于點H,若,,求的度數(shù).6.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點,連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).7.我們知道,任意一個正整數(shù)都可以進行這樣的分解:(,是正整數(shù),且),在的所有這種分解中,如果,兩因數(shù)之差的絕對值最小,我們就稱是的最佳分解,并規(guī)定:.例如:可分解成,或,因為,所以是的最佳分解,所以(1)填空:;;(2)一個兩位正整數(shù)(,,,為正整數(shù)),交換其個位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為,求出所有的兩位正整數(shù);并求的最大值;(3)填空:①;②;8.對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.(1)仿照以上方法計算:=______;=_____.(2)若,寫出滿足題意的x的整數(shù)值______.如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2次=1,這時候結(jié)果為1.(3)對100連續(xù)求根整數(shù),____次之后結(jié)果為1.(4)只需進行3次連續(xù)求根整數(shù)運算后結(jié)果為1的所有正整數(shù)中,最大的是____.9.a(chǎn)是不為1的有理數(shù),我們把稱為a的差倒數(shù).如:2的差倒數(shù)是,現(xiàn)已知a1=,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…(1)求a2,a3,a4的值;(2)根據(jù)(1)的計算結(jié)果,請猜想并寫出a2016?a2017?a2018的值;(3)計算:a33+a66+a99+…+a9999的值.10.閱讀下列解題過程:為了求的值,可設(shè),則,所以得,所以;仿照以上方法計算:(1).(2)計算:(3)計算:11.閱讀下列材料:小明為了計算的值,采用以下方法:設(shè)①則②②-①得,請仿照小明的方法解決以下問題:(1)________;(2)_________;(3)求的和(,是正整數(shù),請寫出計算過程).12.規(guī)定:求若千個相同的有理數(shù)(均不等于)的除法運算叫做除方,如等,類比有理數(shù)的乘方,我們把記作,讀作“的圈次方”,記作,讀作“的圈次方”,一般地,把記作,讀作“”的圈次方.(初步探究)(1)直接寫出計算結(jié)果:;;(2)關(guān)于除方,下列說法錯誤的是()A.任何非零數(shù)的圈次方都等于B.對于任何正整數(shù)C.D.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù)(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?(3)試一試:,依照前面的算式,將,的運算結(jié)果直接寫成冪的形式是,;(4)想一想:將一個非零有理數(shù)的圓次方寫成冪的形式是:;(5)算一算:.13.如圖,已知點,點,且,滿足關(guān)系式.(1)求點、的坐標(biāo);(2)如圖1,點是線段上的動點,軸于點,軸于點,軸于點,連接、.試探究,之間的數(shù)量關(guān)系;(3)如圖2,線段以每秒2個單位長度的速度向左水平移動到線段.若線段交軸于點,當(dāng)三角形和三角形的面積相等時,求移動時間和點的坐標(biāo).14.已知,.點在上,點在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出么的度數(shù).15.如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點,C是第四象限內(nèi)一點,CB⊥y軸交y軸負(fù)半軸于B(0,b),且|a﹣3|+(b+4)2=0,S四邊形AOBC=16.(1)求點C的坐標(biāo).(2)如圖2,設(shè)D為線段OB上一動點,當(dāng)AD⊥AC時,∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數(shù);(點E在x軸的正半軸).(3)如圖3,當(dāng)點D在線段OB上運動時,作DM⊥AD交BC于M點,∠BMD、∠DAO的平分線交于N點,則點D在運動過程中,∠N的大小是否會發(fā)生變化?若不變化,求出其值;若變化,請說明理由.16.對于平面直角坐標(biāo)系xOy中的任意兩點M(x1,y1),N(x2,y2),給出如下定義:將|x1﹣x2|稱為點M,N之間的“橫長”,|y1﹣y2|稱為點M,N之間的縱長”,點M與點N的“橫長”與“縱長”之和稱為“折線距離”,記作d(M,N)=|x1﹣x2|+|y1﹣y2|“.例如:若點M(﹣1,1),點N(2,﹣2),則點M與點N的“折線距離”為:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.根據(jù)以上定義,解決下列問題:已知點P(3,2).(1)若點A(a,2),且d(P,A)=5,求a的值;(2)已知點B(b,b),且d(P,B)<3,直接寫出b的取值范圍;(3)若第一象限內(nèi)的點T與點P的“橫長”與“縱長”相等,且d(P,T)>5,簡要分析點T的橫坐標(biāo)t的取值范圍.17.如圖,在平面直角坐標(biāo)系中,直線與x軸交于點,與y軸交于點,且(1)求;(2)若為直線上一點.①的面積不大于面積的,求P點橫坐標(biāo)x的取值范圍;②請直接寫出用含x的式子表示y.(3)已知點,若的面積為6,請直接寫出m的值.18.如圖,在平面直角坐標(biāo)系xOy中,對于任意兩點A(x1,y1)與B(x2,y2)的“非常距離”,給出如下定義:若|x1﹣x2|≥|y1﹣y2|,則點A與點B的“非常距離”為|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,則點A與點B的“非常距離”為|y1﹣y2|.(1)填空:已知點A(3,6)與點B(5,2),則點A與點B的“非常距離”為;(2)已知點C(﹣1,2),點D為y軸上的一個動點.①若點C與點D的“非常距離”為2,求點D的坐標(biāo);②直接寫出點C與點D的“非常距離”的最小值.19.我國傳統(tǒng)數(shù)學(xué)名著《九章算術(shù)》記載:“今有牛五、羊二,直金十九兩;牛二、羊五,直金十六兩.問牛、羊各直金幾何?”譯文:“假設(shè)有5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子.問每頭牛、每只羊分別值銀子多少兩?”根據(jù)以上譯文,提出以下兩個問題:(1)求每頭牛、每只羊各值多少兩銀子?(2)若某商人準(zhǔn)備用20兩銀子買牛和羊(要求既有牛也有羊,且銀兩須全部用完),請問商人有幾種購買方法?列出所有的可能.20.如圖,和的度數(shù)滿足方程組,且,.(1)用解方程的方法求和的度數(shù);(2)求的度數(shù).21.每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機器,現(xiàn)有甲、乙兩種型號的機器可選,其中每臺的價格、產(chǎn)量如下表:甲型機器乙型機器價格(萬元/臺)ab產(chǎn)量(噸/月)240180經(jīng)調(diào)查:購買一臺甲型機器比購買一臺乙型機器多12萬元,購買2臺甲型機器比購買3臺乙型機器多6萬元.(1)求a、b的值;(2)若該公司購買新機器的資金不超過216萬元,請問該公司有哪幾種購買方案?(3)在(2)的條件下,若公司要求每月的產(chǎn)量不低于1890噸,請你為該公司設(shè)計一種最省錢的購買方案.22.在平面直角坐標(biāo)系中,點、在坐標(biāo)軸上,其中、滿足.(1)求、兩點的坐標(biāo);(2)將線段平移到,點的對應(yīng)點為,如圖1所示,若三角形的面積為,求點的坐標(biāo);(3)平移線段到,若點、也在坐標(biāo)軸上,如圖2所示.為線段上的一動點(不與、重合),連接、平分,.求證:.23.如圖①,在平面直角坐標(biāo)系中,點A在x軸上,直線OC上所有的點坐標(biāo),都是二元一次方程的解,直線AC上所有的點坐標(biāo),都是二元一次方程的解,過C作x軸的平行線,交y軸與點B.(1)求點A、B、C的坐標(biāo);(2)如圖②,點M、N分別為線段BC,OA上的兩個動點,點M從點C以每秒1個單位長度的速度向左運動,同時點N從點O以每秒1.5個單位長度的速度向右運動,設(shè)運動時間為t秒,且0<t<4,試比較四邊形MNAC的面積與四邊形MNOB的面積的大小.24.學(xué)校組織名同學(xué)和名教師參加校外學(xué)習(xí)交流活動現(xiàn)打算選租大、小兩種客車,大客車載客量為人/輛,小客車載客量為人/輛(1)學(xué)校準(zhǔn)備租用輛客車,有幾種租車方案?(2)在(1)的條件下,若大客車租金為元/輛,小客車租金為元/輛,哪種租車方案最省錢?(3)學(xué)校臨時增加名學(xué)生和名教師參加活動,每輛大客車有2名教師帶隊,每輛小客車至少有名教師帶隊.同學(xué)先坐滿大客車,再依次坐滿小客車,最后一輛小客車至少要有人,請你幫助設(shè)計租車方案25.對x,y定義一種新運算T,規(guī)定:T(x,y)=ax+2by﹣1(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:T(0,1)=a?0+2b?1﹣1=2b﹣1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若關(guān)于m的不等式組恰好有2個整數(shù)解,求實數(shù)p的取值范圍;(2)若T(x,y)=T(y,x)對任意實數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?26.對、定義了一種新運算T,規(guī)定(其中,均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:,已知,.(1)求,的值;(2)求.(3)若關(guān)于的不等式組恰好有4個整數(shù)解,求的取值范圍.27.如圖,數(shù)軸上兩點A、B對應(yīng)的數(shù)分別是-1,1,點P是線段AB上一動點,給出如下定義:如果在數(shù)軸上存在動點Q,滿足|PQ|=2,那么我們把這樣的點Q表示的數(shù)稱為連動數(shù),特別地,當(dāng)點Q表示的數(shù)是整數(shù)時我們稱為連動整數(shù).(1)在-2.5,0,2,3.5四個數(shù)中,連動數(shù)有;(直接寫出結(jié)果)(2)若k使得方程組中的x,y均為連動數(shù),求k所有可能的取值;(3)若關(guān)于x的不等式組的解集中恰好有4個連動整數(shù),求這4個連動整數(shù)的值及a的取值范圍.28.(發(fā)現(xiàn)問題)已知,求的值.方法一:先解方程組,得出,的值,再代入,求出的值.方法二:將①②,求出的值.(提出問題)怎樣才能得到方法二呢?(分析問題)為了得到方法二,可以將①②,可得.令等式左邊,比較系數(shù)可得,求得.(解決問題)(1)請你選擇一種方法,求的值;(2)對于方程組利用方法二的思路,求的值;(遷移應(yīng)用)(3)已知,求的范圍.29.如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)分別為(1,0)、(-2,0),現(xiàn)同時將點分別向上平移2個單位,再向左平移1個單位,分別得到點的對應(yīng)點,連接、、.(1)若在軸上存在點,連接,使S△ABM=S□ABDC,求出點的坐標(biāo);(2)若點在線段上運動,連接,求S=S△PCD+S△POB的取值范圍;(3)若在直線上運動,請直接寫出的數(shù)量關(guān)系.30.我區(qū)防汛指揮部在一河道的危險地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時針旋轉(zhuǎn)至便立即逆時針旋轉(zhuǎn)至,如此循環(huán)燈光射線自順時針旋轉(zhuǎn)至便立即逆時針旋轉(zhuǎn)至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉(zhuǎn)動的速度是度/秒,燈轉(zhuǎn)動的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據(jù)相關(guān)信息,解答下列問題.(1)__________,__________.(2)若燈的光射線先轉(zhuǎn)動24秒,燈的光射線才開始轉(zhuǎn)動,在燈的光射線到達之前,燈轉(zhuǎn)動幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時開始轉(zhuǎn)動照射,在燈的光射線到達之前,若兩燈射出的光射線交于點,過點作交于點,則在轉(zhuǎn)動的過程中,與間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出這兩角間的數(shù)量關(guān)系;若改變,請求出各角的取值范圍.【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1)55°或35°;(2)①;②.【解析】【分析】(1)分兩種情況:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根據(jù)點在第二象限的角平分線上,得出∠POE=45°,對頂角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知條件,得出∠CEO=45°,又根據(jù)∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先設(shè)長方形向上平移個單位長,得到長方形,然后列出和的面積,即可得出兩者的數(shù)量關(guān)系;②首先根據(jù)已知條件判定四邊形是平行四邊形,經(jīng)過等量轉(zhuǎn)化,即可得出和的面積,進而得出其面積之比.【詳解】(1)分兩種情況:①令PC交x軸于點E,延長CB至x軸,交于點F,如圖所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵點在第二象限的角平分線上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延長CB,交直線l于點E,由已知得,,∵點在第二象限的角平分線上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案為55°或35°.(2)如圖,①設(shè)長方形向上平移個單位長,得到長方形∴②∵長方形,∴∵,令交于E,則四邊形是平行四邊形,∴∴又∵由①得知,∴∴.【點睛】此題主要考查等量轉(zhuǎn)換和平行四邊形的判定以及性質(zhì),熟練掌握,即可解題.2.(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進行計算即可;(2)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進而得到∠AKC=∠APC;(3)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據(jù)已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是作出平行線構(gòu)造內(nèi)錯角相等計算.3.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當(dāng)點G、F在點E的右側(cè)時,②當(dāng)點G、F在點E的左側(cè)時,依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當(dāng)點G、F在點E的右側(cè)時,則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當(dāng)點G、F在點E的左側(cè)時,則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點睛】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.4.(1)見解析;(2)見解析;(3).【分析】(1)先根據(jù)平行線的性質(zhì)得到,然后結(jié)合即可證明;(2)過作,先說明,然后再說明得到,最后運用等量代換解答即可;(3)設(shè)∠DBE=a,則∠BFC=3a,根據(jù)角平分線的定義可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根據(jù)三角形內(nèi)角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度數(shù)表達式,再根據(jù)平行的性質(zhì)可得∠AFC+∠NCF=180°,代入即可算出a的度數(shù),進而完成解答.【詳解】(1)證明:∵,∴,∵于,∴,∴,∴;(2)證明:過作,∵,∴,又∵,∴,∴,∵,∴,∴,∴;(3)設(shè)∠DBE=a,則∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì)及角的計算,熟練應(yīng)用平行線的性質(zhì)、角平分線的性質(zhì)是解答本題的關(guān)鍵.5.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補,即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.6.(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.7.(1),1;(2)兩位正整數(shù)為39,28,17,的最大值為;(3)①;②【分析】(1)仿照樣例進行計算即可;(2)由題設(shè)可以看出交換前原數(shù)的十位上數(shù)字為a,個位上數(shù)字為b,則原數(shù)可以表示為,交換后十位上數(shù)字為b,個位上數(shù)字為a,則交換后數(shù)字可以表示為,根據(jù)“交換其個位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為54”確定出a與b的關(guān)系式,進而求出所有的兩位數(shù),然后求解確定出的最大值即可;(3)根據(jù)樣例分解計算即可.【詳解】解:(1)∵,∴;∵,∴,故答案為:;1;(2)由題意可得:交換后的數(shù)減去交換前的數(shù)的差為:,∴,∵,∴或或,∴t為39,28,17;∵39=1×39=3×13,∴;28=1×28=2×14=4×7,∴=;17=1×17,∴;∴的最大值.(3)①∵∴;②∴;故答案為:;【點睛】本題主要考查了有理數(shù)的運算,理解最佳分解的定義,并將其轉(zhuǎn)化為有理數(shù)的運算是解題的關(guān)鍵.8.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結(jié)果;(2)根據(jù)定義可知x<4,可得滿足題意的x的整數(shù)值;(3)根據(jù)定義對120進行連續(xù)求根整數(shù),可得3次之后結(jié)果為1;(4)最大的正整數(shù)是255,根據(jù)操作過程分別求出255和256進行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數(shù)是255,理由是:∵[]=15,[]=3,[]=1,∴對255只需進行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對256只需進行4次操作后變?yōu)?,∴只需進行3次操作后變?yōu)?的所有正整數(shù)中,最大的是255,故答案為255.【點睛】本題考查了估算無理數(shù)的大小的應(yīng)用,主要考查學(xué)生的閱讀能力和猜想能力,同時也考查了一個數(shù)的平方數(shù)的計算能力.9.(1)a2=2,a3=-1,a4=(2)a2016?a2017?a2018=-1(3)a33+a66+a99+…+a9999=-1【分析】(1)將a1=代入中即可求出a2,再將a2代入求出a3,同樣求出a4即可.(2)從(1)的計算結(jié)果可以看出,從a1開始,每三個數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2然后計算a2016?a2017?a2018的值;(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,即可求出結(jié)果.【詳解】(1)將a1=,代入,得;將a2=2,代入,得;將a3=-1,代入,得.(2)根據(jù)(1)的計算結(jié)果,從a1開始,每三個數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2所以,a2016?a2017?a2018=(-1)××2=-1(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【點睛】此類問題考查了數(shù)字類的變化規(guī)律,解題的關(guān)鍵是要嚴(yán)格根據(jù)定義進行解答,同時注意分析循環(huán)的規(guī)律.10.(1);(2);(3).【分析】仿照閱讀材料中的方法求出所求即可.【詳解】解:(1)根據(jù)得:(2)設(shè),則,∴,∴即:(3)設(shè),則,∴,∴即:同理可求?∵【點睛】此題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解本題的關(guān)鍵.11.(1);(2);(3)【分析】(1)設(shè)式子等于s,將方程兩邊都乘以2后進行計算即可;(2)設(shè)式子等于s,將方程兩邊都乘以3,再將兩個方程相減化簡后得到答案;(3)設(shè)式子等于s,將方程兩邊都乘以a后進行計算即可.【詳解】(1)設(shè)s=①,∴2s=②,②-①得:s=,故答案為:;(2)設(shè)s=①,∴3s=②,②-①得:2s=,∴,故答案為:;(3)設(shè)s=①,∴as=②,②-①得:(a-1)s=,∴s=.【點睛】此題考查代數(shù)式的規(guī)律計算,能正確理解已知的代數(shù)式的運算規(guī)律是難點,依據(jù)規(guī)律對于每個式子變形計算是關(guān)鍵.12.(1),;(2)C;(3),;(4);(5)-5.【分析】概念學(xué)習(xí):(1)分別按公式進行計算即可;(2)根據(jù)定義依次判定即可;深入思考:(3)由冪的乘方和除方的定義進行變形,即可得到答案;(4)把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),結(jié)果第一個數(shù)不變?yōu)閍,第二個數(shù)及后面的數(shù)變?yōu)?,則;(5)將第二問的規(guī)律代入計算,注意運算順序.【詳解】解:(1);;故答案為:,;(2)A、任何非零數(shù)的圈2次方都等于1;所以選項A正確;B、因為多少個1相除都是1,所以對于任何正整數(shù)n,1?都等于1;
所以選項B正確;C、,,則;故選項C錯誤;D、負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù),故D正確;故選:;(3)根據(jù)題意,,由上述可知:;(4)根據(jù)題意,由(3)可知,;故答案為:(5).【點睛】本題考查了有理數(shù)的混合運算,也是一個新定義的理解與運用;一方面考查了有理數(shù)的乘除法及乘方運算,另一方面也考查了學(xué)生的閱讀理解能力;注意:負(fù)數(shù)的奇數(shù)次方為負(fù)數(shù),負(fù)數(shù)的偶數(shù)次方為正數(shù),同時也要注意分?jǐn)?shù)的乘方要加括號,對新定義,其實就是多個數(shù)的除法運算,要注意運算順序.13.(1);(2);(3),點C的坐標(biāo)為【分析】(1)由題意易得,然后可求a、b的值,進而問題可求解;(2)由(1)及題意易得,然后根據(jù)建立方程求解即可;(3)分別過點作軸于點P,軸于點Q,由題意易得,然后可得,進而可求t的值,最后根據(jù)(2)可得三角形的面積為3,則問題可求解.【詳解】解:(1)∵,∴,∴,∴點,點;(2)由(1)可得點,點,∵軸于點,軸于點,軸于點,∴,,∵,∴,∵,且,∴,化簡得;(3)分別過點作軸于點P,軸于點Q,如圖所示:∵線段以每秒2個單位長度的速度向左水平移動到線段,時間為,∴,∵三角形和三角形的面積相等,∴,∴,∴,解得:,∴,由(2)可得三角形的面積為,∴三角形的面積為3,即,∴,∴.【點睛】本題主要考查圖形與坐標(biāo)、算術(shù)平方根與偶次冪的非負(fù)性及等積法,熟練掌握圖形與坐標(biāo)、算術(shù)平方根與偶次冪的非負(fù)性及等積法是解題的關(guān)鍵.14.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.15.(1)C(5,﹣4);(2)90°;(3)見解析.【詳解】分析:(1)利用非負(fù)數(shù)的和為零,各項分別為零,求出a,b即可;(2)用同角的余角相等和角平分線的意義即可;(3)利用角平分線的意義和互余兩角的關(guān)系簡單計算證明即可.詳解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四邊形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一點,CB⊥y軸,∴C(5,﹣4);(2)如圖,延長CA,∵AF是∠CAE的角平分線,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分線,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不變,∠ANM=45°理由:如圖,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分線,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y軸,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵MN是∠BMD的角平分線,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D點在運動過程中,∠N的大小不變,求出其值為45°點睛:此題是四邊形綜合題,主要考查了非負(fù)數(shù)的性質(zhì),四邊形面積的計算方法,角平分線的意義,解本題的關(guān)鍵是用整體的思想解決問題,也是本題的難點.16.(1)a=﹣2或a=8;(2)1<b<4;(3)t或0<t.【分析】(1)將點P與點A代入d(M,N)=|x1?x2|+|y1?y2|即可求解;(2)將點B與點P代入d(M,N)=|x1?x2|+|y1?y2|,得到d(P,B)=|3?b|+|2?b|,分三種情況去掉絕對值符號進行化簡,有當(dāng)b<2時,d(P,B)=3?b+2?b=5?2b<3;當(dāng)2≤b≤3時,d(P,B)=3?b+b?2=1<3;當(dāng)b>3時,d(P,B)=b?3+b?2=2b?5<3;(3)設(shè)T點的坐標(biāo)為(t,m),由點T與點P的“橫長”與“縱長”相等,得到|t?3|=|m?2|,得到t與m的關(guān)系式,再由T在第一象限,d(P,T)>5,結(jié)合求解即可.【詳解】(1)∵點P(3,2),點A(a,2),∴d(P,A)=|3﹣a|+|2﹣2|=5,∴a=﹣2或a=8;(2)∵點P(3,2),點B(b,b),∴d(P,B)=|3﹣b|+|2﹣b|,當(dāng)b<2時,d(P,B)=3﹣b+2﹣b=5﹣2b<3,∴b>1,∴1<b<2;當(dāng)2≤b≤3時,d(P,B)=3﹣b+b﹣2=1<3成立,∴2≤b≤3;當(dāng)b>3時,d(P,B)=b﹣3+b﹣2=2b﹣5<3,∴b<4,∴3<b<4;綜上所述:1<b<4;(3)設(shè)T點的坐標(biāo)為(t,m),點T與點P的“橫長”=|t﹣3|,點T與點P的“縱長”=|m﹣2|.∵點T與點P的“橫長”與“縱長”相等,∴|t﹣3|=|m﹣2|,∴t﹣3=m﹣2或t﹣3=2﹣m,∴m=t﹣1或m=5﹣t.∵點T是第一象限內(nèi)的點,∴m>0,∴t>1或t<5,又∵d(P,T)>5,∴2|t﹣3|>5,∴t或t,∴t或0<t.【點睛】本題考查平面內(nèi)點的坐標(biāo),新定義;能夠?qū)⒍x內(nèi)容轉(zhuǎn)化為絕對值不等式,再將絕對值不等式根據(jù)絕對值的意義轉(zhuǎn)化為一元一次不等式的求解是解題的關(guān)鍵.17.(1)4;(2)①或;②;(3)或.【分析】(1)先根據(jù)偶次方和絕對值的非負(fù)性求出的值,從而可得點的坐標(biāo)和的長,再利用直角三角形的面積公式即可得;(2)①分和兩種情況,先分別求出和的面積,再根據(jù)已知條件建立不等式,解不等式即可得;②分和兩種情況,利用、和的面積關(guān)系建立等式,化簡即可得;(3)過點作軸的平行線,交直線于點,從而可得,再分、和三種情況,分別利用三角形的面積公式建立方程,解方程即可得.【詳解】解:(1)由題意得:,解得,,,軸軸,;(2)①的面積不大于面積的,的面積小于的面積,則分以下兩種情況:如圖,當(dāng)時,則,,因此有,解得,此時的取值范圍為;如圖,當(dāng)時,則,,因此有,解得,此時的取值范圍為,綜上,點橫坐標(biāo)的取值范圍為或;②當(dāng)時,則,,由(2)①可知,,則,即;如圖,當(dāng)時,則,,,,,解得,綜上,;(3)過點作軸的平行線,交直線于點,由(2)②可知,,則,由題意,分以下三種情況:①如圖,當(dāng)時,則,,解得,不符題設(shè),舍去;②如圖,當(dāng)時,則,,解得或(不符題設(shè),舍去);③如圖,當(dāng)時,則,,解得,符合題設(shè),綜上,的值為或.【點睛】本題考查了偶次方和絕對值的非負(fù)性、坐標(biāo)與圖形等知識點,較難的是題(3),正確分三種情況討論是解題關(guān)鍵.18.(1)4;(2)①或;②1.【分析】(1)依照題意,分別求出和,比較大小,得出答案,(2)點在軸上所以橫坐標(biāo)為0,,所以點和點的縱坐標(biāo)差的絕對值應(yīng)為2,可得點坐標(biāo),(3)已知點和點的橫坐標(biāo)差的絕對值恒等于1,縱坐標(biāo)差的絕對是個動點問題,取值范圍和1比較,可得出最小值為1.【詳解】解:(1),,,,點與點的“非常距離”為4.故答案為:4.(2)①點在軸上所以橫坐標(biāo)為0,點和點的縱坐標(biāo)差的絕對值應(yīng)為2,設(shè)點的縱坐標(biāo)為,,解得或,點的坐標(biāo)為或,故點的坐標(biāo)為或;②最小值為1,理由為已知點和點的橫坐標(biāo)差的絕對值恒等于1,,設(shè)點的縱坐標(biāo)為,當(dāng)時,,可得點與點的“非常距離”為1,當(dāng)或時,,可得點與點的“非常距離”為.,點與點的“非常距離”的最小值為1,故點與點的“非常距離”的最小值為1.【點睛】本題考查了直角坐標(biāo)系坐標(biāo)結(jié)合絕對值的應(yīng)用,是新定義問題,難點在于第三問的動點位置取值范圍討論,需要學(xué)生根據(jù)題意正確討論.19.(1)每頭牛3兩銀子,每頭羊2兩銀子;(2)共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊【分析】(1)設(shè)每頭牛值x兩銀子,每只羊值y兩銀子,根據(jù)“5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)購買a頭牛,b只羊,利用總價=單價×數(shù)量,即可得出關(guān)于a,b的二元一次方程,結(jié)合a,b均為正整數(shù),即可得出各購買方案.【詳解】解:(1)設(shè)每頭牛x兩銀子,每頭羊y兩銀子,根據(jù)題意,得解得答:每頭牛3兩銀子,每頭羊2兩銀子.(含設(shè))(2)設(shè)該商人購買了a頭牛,b頭羊,根據(jù)題意,得∵a、b均為正整數(shù)∴該方程的解為或或所以共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊.【點睛】本題考查了二元一次方程組的應(yīng)用、數(shù)學(xué)常識以及二元一次方程的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;(2)找準(zhǔn)等量關(guān)系,正確列出二元一次方程.20.(1),;(2)【分析】(1)把和當(dāng)做未知數(shù),利用加減消元法解二元一次方程組即可;(2)先證明AB∥EF,則可以得到CD∥AB,∠C+∠CAB=180°,求出∠CAB的度數(shù)即可求解.【詳解】解:(1)用②+①得:,解得,把代入①解得;(2)∵∴AB∥EF,∵,∴CD∥AB,∴∠C+∠CAB=180°,∵∠CAB=∠EAC+∠BAE,AC⊥AE,∴∠CAE=90°,∴∠CAB=140°∴40°.【點睛】本題考查了平行線的判定和性質(zhì),解二元一次方程組,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.21.(1);(2)有4種方案:3臺甲種機器,7臺乙種機器;2臺甲種機器,8臺乙種機器;1臺甲種機器,9臺乙種機器;10臺乙種機器.(3)最省錢的方案是購買2臺甲種機器,8臺乙種機器.【分析】(1)根據(jù)購買一臺甲型機器比購買一臺乙型機器多12萬元,購買2臺甲型機器比購買3臺乙型機器多6萬元這一條件建立一元二次方程組求解即可,(2)設(shè)買了x臺甲種機器,根據(jù)該公司購買新機器的資金不超過216萬元,建立一次不等式求解即可,(3)將兩種機器生產(chǎn)的產(chǎn)量相加,使總產(chǎn)量不低于1890噸,求出x的取值范圍,再分別求出對應(yīng)的成本即可解題.【詳解】(1)解:由題意得,解得,;(2)解:設(shè)買了x臺甲種機器由題意得:30+18(10-x)≤216解得:x≤3∵x為非負(fù)整數(shù)∴x=0、1、2、3∴有4種方案:3臺甲種機器,7臺乙種機器;2臺甲種機器,8臺乙種機器;1臺甲種機器,9臺乙種機器;10臺乙種機器.(3)解:由題意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤3∴整數(shù)x=2或3當(dāng)x=2時購買費用=30×2+18×8=204(元)當(dāng)x=3時購買費用=30×3+18×7=216(元)∴最省錢的方案是購買2臺甲種機器,8臺乙種機器.【點睛】本題考查了利潤的實際應(yīng)用,二元一次方程租的實際應(yīng)用,一元一次不等式的實際應(yīng)用,難度較大,認(rèn)真審題,找到等量關(guān)系和不等關(guān)系并建立方程組和不等式組是解題關(guān)鍵.22.(1),兩點的坐標(biāo)分別為,;(2)點的坐標(biāo)是;(3)證明見解析【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得出二元一次方程組,求解即可;(2)過點B作y軸的平行線分別與過點A,C作x軸的平行線交于點N,點M,過點C作y軸的平行線與過點A作x軸的平行線交于點T,根據(jù)三角形的面積長方形的面積(三角形的面積三角形的面積三角形的面積)列出方程,求解得出點C的坐標(biāo),由平移的規(guī)律可得點D的坐標(biāo);(3)過點作,交軸于點,過點作,交于點,根據(jù)兩直線平行,內(nèi)錯角相等與已知條件得出,同樣可證,由平移的性質(zhì)與平行公理的推論可得,最后根據(jù),通過等量代換進行證明.【詳解】解:(1),又∵,,,,即,解方程組得,,兩點的坐標(biāo)分別為,;(2)如圖,過點B作y軸的平行線分別與過點A,C作x軸的平行線交于點N,點M,過點C作y軸的平行線與過點A作x軸的平行線交于點T,∴三角形的面積長方形的面積(三角形的面積三角形的面積三角形的面積),根據(jù)題意得,,化簡,得,解得,,依題意得,,,即點的坐標(biāo)為,依題意可知,點的坐標(biāo)是由點的坐標(biāo)先向左平移個單位長度,再向下平移個單位長度得到的,從而可知,點的坐標(biāo)是由點的坐標(biāo)先向左平移個單位長度,再向下平移個單位長度得到的,∴點的坐標(biāo)是;(3)證明:過點作,交軸于點,如圖所示,則,,,過點作,交于點,如圖所示,則,平分,,,由平移得,,,,,,,.【點睛】本題綜合性較強,考查非負(fù)數(shù)的性質(zhì),解二元一次方程組,平行線的性質(zhì),平移的性質(zhì),坐標(biāo)與圖形的性質(zhì),第(3)題巧作輔助線構(gòu)造平行線是解題的關(guān)鍵.23.(1),,;(2)見解析.【分析】(1)令中的,求出相應(yīng)的x的值,即可得到A的坐標(biāo),將方程和方程聯(lián)立成方程組,解方程組即可得到C的坐標(biāo),進而可得到B的坐標(biāo);(2)分別利用梯形的面積公式表示出四邊形MNAC的面積與四邊形MNOB的面積,然后根據(jù)t的范圍,分情況討論即可.【詳解】(1)令,則,解得,.解得.軸,∴點B的縱坐標(biāo)與點C的縱坐標(biāo)相同,;(2),,,.∵點M從點C以每秒1個單位長度的速度向左運動,同時點N從點O以每秒1.5個單位長度的速度向右運動,,,,.當(dāng)時,即時,;當(dāng)時,即時,;當(dāng)時,即時,.【點睛】本題主要考查二元一次方程及方程組的應(yīng)用,數(shù)形結(jié)合并分情況討論是解題的關(guān)鍵.24.(1)有3種租車方案;(2)租5輛大客車,2輛小客車最省錢;(3)租用大客車2輛,小客車7輛;或租10輛小客車.【分析】(1)設(shè)租大客車x輛,根據(jù)題意可列出關(guān)于x的不等式,求得不等式的解集后,再根據(jù)x為整數(shù)即可確定租車方案;(2)依次計算(1)題中的租車方案,比較結(jié)果即可得出答案;(3)設(shè)租大客車x輛,小客車y輛,根據(jù)客車的座位數(shù)滿足的條件可確定x、y滿足的不等式組,進一步可確定x、y滿足的方程,再由帶隊的老師數(shù)可確定x、y滿足的不等式,二者結(jié)合即可確定租車方案.【詳解】解:(1)由題意知:本次乘車共270+7=277(人).設(shè)租大客車x輛,則小客車(7-x)輛,根據(jù)題意,得,解得:,因為x為整數(shù),且x≤7,所以x=5,6,7,即有3種租車方案.(2)方案一:當(dāng)x=7,所租7輛皆為大客車時,租車費用為:7×400=2800(元),方案二:當(dāng)x=6,所租6輛為大客車,1輛為小客車時,租車費用為:6×400+300=2700(元),方案三:當(dāng)x=5,所租5輛為大客車,2輛為小客車時,租車費用為:5×400+300×2=2600(元),所以,租5輛大客車,2輛小客車最省錢.(3)乘車總?cè)藬?shù)為270+7+10+4=291(人),因為最后一輛小客車最少20人,則客車空位不能大于10個,所以客車的總座位數(shù)應(yīng)滿足:291≤座位數(shù)≤301.設(shè)租大客車x輛,小客車y輛,則291≤45x+30y≤301,即,∵x、y均為整數(shù),∴3x+2y=20,即.∵每輛大客車有2名教師帶隊,每輛小客車至少有名教師帶隊,∴2x+y≤11.把代入上式,得,解得.又∵x為整數(shù)且是2的倍數(shù),∴x=2,y=7或x=0,y=10.故租車方案為:租大客車2輛,小客車7輛;或租10輛小客車.【點睛】本題考查了不等式和不等式組的實際應(yīng)用、二元一次方程的整數(shù)解等知識,正確理解題意,列出不等式和不等式組是解題的關(guān)鍵.25.(1)①a=1,b=3;②-2≤p<-;(2)a=2b.【分析】(1)①按題意的運算可得方程組,即可求得a、b的值;②按題意的運算可得不等式組,即可求得p的取值范圍;(2)由題意可得ax+2by-1=ay+2bx-1,從而可得a=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年法學(xué)專業(yè)知識法學(xué)理論與應(yīng)用模擬題集202X年度題庫
- 2026年汽車維修與駕駛技能知識題庫
- 2026年CET四級英語單詞拓展和考點總結(jié)習(xí)題冊
- 2026年心理測試心理咨詢師專業(yè)能力測試題集
- 2026年汽車維修工職業(yè)資格考試汽車構(gòu)造與原理理論題集
- 護理新進展與新理念
- 2026年保定理工學(xué)院單招綜合素質(zhì)考試模擬試題含詳細(xì)答案解析
- 外貿(mào)新人入職培訓(xùn)
- 2026黑龍江黑河五大連池市農(nóng)村中心敬老院招8人參考考試試題及答案解析
- 2026上半年貴州事業(yè)單位聯(lián)考省科學(xué)技術(shù)協(xié)會招聘3人筆試模擬試題及答案解析
- 企業(yè)訴訟案件管理辦法
- 新疆金礦概述
- 給醫(yī)生感謝信又短又好(5篇)
- 濕疹 (中醫(yī)院皮膚科)
- 實驗室儀器設(shè)備驗收單
- 智能照明系統(tǒng)調(diào)試記錄
- 關(guān)于若干歷史問題的決議(1945年)
- 畢業(yè)論文8000字【6篇】
- 隨訪管理系統(tǒng)功能參數(shù)
- 探究應(yīng)用新思維七年級數(shù)學(xué)練習(xí)題目初一
- 污水管網(wǎng)竣工驗收報告
評論
0/150
提交評論