版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
海南省瓊海市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖是一個三級臺階,它的每一級的長、寬、高分別為20dm、3dm、2dm,A和B是這個臺階上兩個相對的端點(diǎn),點(diǎn)A處有一只螞蟻,想到點(diǎn)B處去吃可口的食物,則螞蟻沿著臺階面爬行到點(diǎn)B的最短路程為(
)A.20dm B.25dm C.30dm D.35dm2、在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,下列結(jié)論中不正確的是(
)A.如果a2=b2?c2,那么△ABC是直角三角形且∠A=90°B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果,那么△ABC是直角三角形D.如果,那么△ABC是直角三角形3、《九章算術(shù)》中的“折竹抵地”問題:今有竹高一丈,末折抵地,去根六尺.問折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠(yuǎn),問折斷處離地面的高度是多少?設(shè)折斷處離地面的高度為尺,則可列方程為(
)A. B.C. D.4、如圖,在矩形ABCD中,,將△ABD沿對角線BD對折,得到△EBD,DE與BC交于F,,則(
)A. B.3 C. D.65、如圖,△OAB的頂點(diǎn)O(0,0),頂點(diǎn)A,B分別在第一、四象限,且AB⊥x軸,若AB=6,OA=OB=5,則點(diǎn)A的坐標(biāo)是(
)A. B. C. D.6、如圖,一棵大樹在一次強(qiáng)臺風(fēng)中距地面5m處折斷,倒下后樹頂端著地點(diǎn)A距樹底端B的距離為12m,這棵大樹在折斷前的高度為(
)A.10m B.15m C.18m D.20m7、在中,,,,的對邊分別是a,b,c,若,,則的面積是(
)A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、把一根長12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.2、公元三世紀(jì),我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的“趙爽弦圖”,它由四個全等的直角三角形與中間的小正方形拼成的一個大正方形,如果小正方形面積是49,直角三角形中較小銳角θ的正切為,那么大正方形的面積是_____.3、如圖,在中,,于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對稱點(diǎn)落在CD的延長線上.若,,則的面積為__________.4、如圖,在矩形中,,垂足為點(diǎn).若,,則的長為______.5、如圖,在一次綜合實(shí)踐活動中,小明將一張邊長為10cm的正方形紙片ABCD,沿著BC邊上一點(diǎn)E與點(diǎn)A的連線折疊,點(diǎn)B'是點(diǎn)B的對應(yīng)點(diǎn),延長EB'交DC于點(diǎn)G,B'G=cm,則△ECG的面積為_____cm2.6、如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點(diǎn)E在BC上,將△ABC沿AE折疊,使點(diǎn)B落在AC邊上的點(diǎn)B′處,則BE的長為________________.7、《九章算術(shù)》中有一道“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”題意是:有一個池塘,其底面是邊長為10尺的正方形,一棵蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長_____尺.8、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對稱點(diǎn)B'落在CD的延長線上.若AB=10,BC=8,則△ACE的面積為________.三、解答題(7小題,每小題10分,共計70分)1、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹被折斷,樹的頂部落在離樹根8米處,即,求這棵樹在離地面多高處被折斷(即求AC的長度)?2、如圖,有一個水池,水面是一個邊長為16尺的正方形,在水池正中央有一根蘆葦,它高出水面2尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面,則水池里水的深度是多少尺?請你用所學(xué)知識解答這個問題.3、如圖,點(diǎn)是正方形內(nèi)一點(diǎn),將繞點(diǎn)順時針旋轉(zhuǎn)到的位置,若,求的度數(shù).4、如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).(1)求梯子底端B外移距離BD的長度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.5、有一只喜鵲在一棵高3米的小樹的樹梢上覓食,它的巢筑在距離該樹24米,高為14米的一棵大樹上,且巢離大樹頂部為1米,這時,它聽到巢中幼鳥求助的叫聲,立刻趕過去,如果它的飛行速度為每秒5米,那么它至少幾秒能趕回巢中?6、如圖,在△ABC中,∠C=90°,M是BC的中點(diǎn),MD⊥AB于D,求證:.7、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.-參考答案-一、單選題1、B【解析】【分析】先將圖形平面展開,再用勾股定理根據(jù)兩點(diǎn)之間線段最短進(jìn)行解答.【詳解】三級臺階平面展開圖為長方形,長為20dm,寬為(2+3)×3dm,則螞蟻沿臺階面爬行到B點(diǎn)最短路程是此長方形的對角線長.可設(shè)螞蟻沿臺階面爬行到B點(diǎn)最短路程為xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故選B.【考點(diǎn)】本題考查了平面展開——最短路徑問題,用到臺階的平面展開圖,只要根據(jù)題意判斷出長方形的長和寬即可解答.2、A【解析】【分析】根據(jù)直角三角形的判定和勾股定理的逆定理解答即可.【詳解】解:A、如果
a2=b2-c2,即b2=a2+c2,那么△ABC
是直角三角形且∠B=90°,選項(xiàng)錯誤,符合題意;B、如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;C、如果
a2:b2:c2=9:16:25,滿足a2+b2=c2,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;D、如果∠A-∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;故選:A.【考點(diǎn)】本題考查的是直角三角形的判定和勾股定理的逆定理的應(yīng)用,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.3、D【解析】【分析】先畫出三角形,根據(jù)勾股定理和題目設(shè)好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設(shè)折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點(diǎn)】本題考查勾股定理的方程思想,解題的關(guān)鍵是根據(jù)題意利用勾股定理列出方程.4、A【解析】【分析】根據(jù)折疊的性質(zhì),可知BF=DF=-EF,在Rt中,由勾股定理得:,由此即可求得EF值.【詳解】解:∵,,∴AD=,,由折疊可知,AB=BE=6,AD=ED=,,,∵,∴∠BDF=∠DBF∴BF=DF=-EF,∴在Rt中,由勾股定理得:,∴,解得:EF=,故選:A.【考點(diǎn)】本題主要考查的是勾股定理的應(yīng)用,靈活利用折疊進(jìn)行發(fā)掘條件是解題的關(guān)鍵.5、D【解析】【分析】利用HL證明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【詳解】解:∵AB⊥x軸,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴點(diǎn)A的坐標(biāo)是(4,3),故選:D.【考點(diǎn)】本題考查了坐標(biāo)與圖形,全等三角形的判定和性質(zhì),勾股定理,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.6、C【解析】【詳解】∵樹的折斷部分與未斷部分、地面恰好構(gòu)成直角三角形,且BC=5m,AB=12m,∴AC===13m,∴這棵樹原來的高度=BC+AC=5+13=18m.故選C.7、A【解析】【分析】根據(jù)題意可知,的面積為,結(jié)合已知條件,根據(jù)完全平方公式變形求值即可.【詳解】解:中,,,,所對的邊分別為a,b,c,,∵,,∴,,故A正確.故選:A.【考點(diǎn)】本題主要考查了勾股定理,完全平方公式變形求值,解題的關(guān)鍵是將完全平方公式變形求出ab的值.二、填空題1、直角三角形【解析】【分析】首先計算出第三條鐵絲的長度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點(diǎn)】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.2、169.【解析】【分析】由題意知小正方形的邊長為7.設(shè)直角三角形中較小邊長為a,較長的邊為b,運(yùn)用正切函數(shù)定義求解.【詳解】解:由題意知,小正方形的邊長為7,設(shè)直角三角形中較小邊長為a,較長的邊為b,則tanθ=短邊:長邊=a:b=5:12.所以b=a,①又以為b=a+7,②聯(lián)立①②,得a=5,b=12.所以大正方形的面積是:a2+b2=25+144=169.故答案是:169.【考點(diǎn)】本題主要考查了解直角三角形、勾股定理的證明和正方形的面積,掌握解直角三角形、勾股定理的證明和正方形的面積是解題的關(guān)鍵.3、【解析】【分析】在△ABC中由等面積求出,進(jìn)而得到,設(shè)BE=x,進(jìn)而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點(diǎn)】本題考查了勾股定理求線段長、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長.4、3【解析】【分析】在中,由正弦定義解得,再由勾股定理解得DE的長,根據(jù)同角的余角相等,得到,最后根據(jù)正弦定義解得CD的長即可解題.【詳解】解:在中,在矩形中,故答案為:3.【考點(diǎn)】本題考查矩形的性質(zhì)、正弦、勾股定理等知識,是重要考點(diǎn),難度較易,掌握相關(guān)知識是解題關(guān)鍵.5、【解析】【分析】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,則BE=B′E,連接AG,可證△AB′G≌△ADG,則DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,根據(jù)勾股定理列出方程,可求出BE的值,從而求出CE,最后由三角形面積公式求出△ECG的面積.【詳解】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,BE=B′E,連接AG,如圖,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,則CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根據(jù)勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面積=(cm2)故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,結(jié)合全等的知識找出題中的線段之間的關(guān)系是本題的解題關(guān)鍵.6、.【解析】【分析】首先根據(jù)勾股定理求出BC的長,根據(jù)折疊性質(zhì),可得=AB=3,=BE,∠B=∠=90°,然后設(shè)BE=,根據(jù)勾股定理,列出,求解即可.【詳解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,將△ABC沿AE折疊,∴=AB=3,=BE,∠B=∠=90°,則,設(shè)BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案為.【考點(diǎn)】本題主要考查了翻折變換的性質(zhì)及勾股定理的應(yīng)用;解題的關(guān)鍵是準(zhǔn)確找出圖形中隱含的相等關(guān)系.7、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設(shè)水深A(yù)C=x尺,則蘆葦長(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L和水深.【詳解】解:設(shè)水深x尺,則蘆葦長(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長13尺,故答案為:13【考點(diǎn)】本題考查勾股定理,和列方程解決實(shí)際問題,能夠在實(shí)際問題中找到直角三角形并應(yīng)用勾股定理是解決本題的關(guān)鍵.8、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點(diǎn)B的對稱點(diǎn)B'落在CD的延長線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點(diǎn)】本題考查直角三角形中的折疊問題,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練運(yùn)用勾股定理.三、解答題1、這棵樹在離地面6米處被折斷【解析】【分析】設(shè),利用勾股定理列方程求解即可.【詳解】解:設(shè),∵在中,,∴,∴.答:這棵樹在離地面6米處被折斷【考點(diǎn)】本題考查了勾股定理,熟練掌握勾股定理是解答本題的關(guān)鍵.直角三角形兩條直角邊的平方和等于斜邊的平方.當(dāng)題目中出現(xiàn)直角三角形,且該直角三角形的一邊為待求量時,常使用勾股定理進(jìn)行求解.有時也可以利用勾股定理列方程求解.2、水池里水的深度是15尺【解析】【分析】根據(jù)勾股定理列出方程,解方程即可.【詳解】解:設(shè)水池里水的深度是x尺,由題意得,,解得:x=l5,答:水池里水的深度是15尺.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,掌握勾股定理、根據(jù)勾股定理正確列出方程是解題的關(guān)鍵.3、【解析】【分析】連接EE`,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BE'=2,AE=CE'=1,∠EBE`=90°,則可判斷△BEE`為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得EE`=BE=2,∠BE`E=45°,在△CEE'中,由于CE`+EE'=CE,根據(jù)勾股定理的逆定理得到△CEE`為直角三角形,即∠EE`C=90°,然后利用∠BE'C=∠BE'E+∠CE'E求解【詳解】連接EE`,如圖,∵△ABE繞點(diǎn)B順時針旋轉(zhuǎn)90°得到△CBE`∴BE=BE'=2,AE=CE'=1,∠EBE'=90°∴△BEE'為等腰直角三角形∴EE'=BE=2,∠BE'E=45°在△CEE`中,CE=3,CE'=1,EE'=2,∵1+(2)=3∴CE+EE'=CE∴△CEE'為直角三角形∴∠EE'C=90°∴∠BE'C=∠BE'E+∠CE'E=135°【考點(diǎn)】此題考查了等腰直角三角形,勾股定理的逆定理,正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì),利用勾股定理證明三角形是直角三角形是解題關(guān)鍵4、(1)BD=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明見解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根據(jù)勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根據(jù)全等三角形的性質(zhì)得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根據(jù)等腰三角形的判定得出即可.【詳解】(1)∵AO⊥OD,AO=4m,AB=5m,∴OB==3m,∵梯子的頂端A沿墻下滑1m至C點(diǎn),∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明如下:連接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°,在Rt△AOB和Rt△DOC中,∴Rt△AOB≌Rt△DOC(HL),∴∠ABO=∠DCO,OC=OB,∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,∴∠EBC=∠ECB,∴CE=BE.【考點(diǎn)】本題考查了勾股定理,等腰三角形的性質(zhì)和判定,全等三角形的判定與性質(zhì)等,能靈活運(yùn)用勾股定理進(jìn)行計算是解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 對國內(nèi)視頻網(wǎng)站盈利模式的探討-以愛奇藝為例
- 5G技術(shù)的發(fā)展及應(yīng)用
- 2025年中職表演類(雜技表演基礎(chǔ))試題及答案
- 2026年注冊土木工程師(水利水電工程)(水土保持)(專業(yè)案例考試(下))試題及答案
- 2025年中職安全技術(shù)與管理(消防器材使用)試題及答案
- 大學(xué)(經(jīng)濟(jì)學(xué)基礎(chǔ))供求理論應(yīng)用2026年階段測試題及答案
- 2025年中職高職銜接 市場營銷(市場分析)試題及答案
- 2026年建筑裝飾(裝飾施工)考題及答案
- 2025年中職(會計電算化)會計憑證填制審核測試題及答案
- 2025年大學(xué)文秘(應(yīng)用文寫作)試題及答案
- 2025年投融資崗位筆試試題及答案
- 烤房轉(zhuǎn)讓合同范本
- 機(jī)械通氣護(hù)理常規(guī)
- 國家開放大學(xué)《中文學(xué)科論文寫作》形考任務(wù)1-4參考答案
- 2024屆高考英語作文復(fù)習(xí)專項(xiàng):讀后續(xù)寫“助人為樂”類范文5篇 講義素材
- 2024年供應(yīng)鏈管理師(一級)資格考試復(fù)習(xí)題庫(含答案)
- 氣墊床的使用課件
- 贛價協(xié)〔2015〕9號江西省建設(shè)工程造價咨詢服務(wù)收費(fèi)基準(zhǔn)價
- GB/T 27843-2011化學(xué)品聚合物低分子量組分含量測定凝膠滲透色譜法(GPC)
- GB/T 19362.2-2017龍門銑床檢驗(yàn)條件精度檢驗(yàn)第2部分:龍門移動式銑床
- GB/T 18371-2008連續(xù)玻璃纖維紗
評論
0/150
提交評論