解析卷湖北省鐘祥市中考數(shù)學真題分類(平行線的證明)匯編綜合訓練試卷(含答案詳解版)_第1頁
解析卷湖北省鐘祥市中考數(shù)學真題分類(平行線的證明)匯編綜合訓練試卷(含答案詳解版)_第2頁
解析卷湖北省鐘祥市中考數(shù)學真題分類(平行線的證明)匯編綜合訓練試卷(含答案詳解版)_第3頁
解析卷湖北省鐘祥市中考數(shù)學真題分類(平行線的證明)匯編綜合訓練試卷(含答案詳解版)_第4頁
解析卷湖北省鐘祥市中考數(shù)學真題分類(平行線的證明)匯編綜合訓練試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省鐘祥市中考數(shù)學真題分類(平行線的證明)匯編綜合訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列說法正確的是(

)A.“任意畫一個三角形,其內角和為”是必然事件 B.調查全國中學生的視力情況,適合采用普查的方式C.抽樣調查的樣本容量越小,對總體的估計就越準確 D.十字路口的交通信號燈有紅、黃、綠三種顏色,所以開車經過十字路口時,恰好遇到黃燈的概率是2、如圖,、都是的角平分線,且,則(

)A.45° B.50° C.65° D.70°3、如圖,有以下四個條件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的條件的個數(shù)有(

)A.1 B.2 C.3 D.44、在四邊形ABCD中,如果∠B+∠C=180°,那么

()A.AB∥CD B.AD∥BC C.AB與CD相交 D.AB與DC垂直5、如圖,∠ABD、∠ACD的角平分線交于點P,若∠A=50°,∠D=10°,則∠P的度數(shù)為(

)A.15° B.20° C.25° D.30°6、如圖,把△ABC沿EF對折,折疊后的圖形如圖所示,,,則的度數(shù)為(

)A. B. C. D.7、兩個直角三角板如圖擺放,其中,,,AB與DF交于點M.若,則的大小為(

)A. B. C. D.8、如圖所示,過點P畫直線a的平行線b的作法的依據是()A.兩直線平行,同位角相等 B.同位角相等,兩直線平行C.兩直線平行,內錯角相等 D.內錯角相等,兩直線平行第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,若AB⊥BC,BC⊥CD,則直線AB與CD的位置關系是______.2、如圖,△ABC的外角∠DBC、∠ECB的角平分線交于點M,∠ACB的角平分線與BM的反向延長線交于點N,若在△CMN中存在一個內角等于另一個內角的2倍,則∠A的度數(shù)為_______3、如圖,四邊形ABCD中,點M,N分別在AB,BC上,將沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,則∠B=___°.4、如圖,在ΔABC中,E、F分別是AB、AC上的兩點,∠1+∠2=235°,則∠A=____度.5、用一組整數(shù)a,b,c的值說明命題“若a>b>c,則a+b>c”是錯誤的,這組值可以是a=__,b=__,c=__.6、把“同角的余角相等”改成“如果…,那么…”:_________________________________.7、如圖,將長方形紙片分別沿,折疊,點,恰好重合于點,,則__________.三、解答題(7小題,每小題10分,共計70分)1、已知:如圖1,,BD平分,,過點A作直線,延長CD交MN于點E(1)當時,的度數(shù)為______.(2)如圖2,當時,求的度數(shù);(3)設,用含x的代數(shù)式表示的度數(shù).2、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數(shù)量關系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點,連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點G,若OF=2,△DEO的面積為10,直接寫出OG的長.3、已知:如圖,點E在線段CD上,EA、EB分別平分∠DAB和∠ABC,∠AEB=90°,設AD=x,BC=y(tǒng),且(x﹣2)2+|y﹣5|=0.(1)求AD和BC的長.(2)試說線段AD與BC有怎樣的位置關系?并證明你的結論.(3)你能求出AB的長嗎?若能,請寫出推理過程,若不能,說明理由.4、如圖,已知于點,于點,,試說明.解:因為(已知),所以().同理.所以().即.因為(已知),所以().所以().5、如圖,在中,點D為上一點,將沿翻折得到,與相交于點F,若平分,,.(1)求證:;(2)求的度數(shù).6、如圖所示,已知BO、CO分別是∠ABC與∠ACB的平分線,DE過O點且與BC平行.(1)若∠ABC=52°,∠ACB=60°,求∠BOC的大??;(2)若∠A=60°,求∠BOC的大?。?3)直接寫出∠A與∠BOC的關系是∠BOC=.(用∠A表示出來)7、如圖,已知直線AB∥DF,∠D+∠B=180°.(1)試說明DE∥BC;(2)若∠AMD=75°,求∠AGC的度數(shù).-參考答案-一、單選題1、A【解析】【分析】由三角形的內角和定理可判斷A,由抽樣調查與普查的含義可判斷B,C,由簡單隨機事件的概率可判斷D,從而可得答案.【詳解】解:“任意畫一個三角形,其內角和為”是必然事件,表述正確,故A符合題意;調查全國中學生的視力情況,適合采用抽樣調查的方式,故B不符合題意;抽樣調查的樣本容量越小,對總體的估計就越不準確,故C不符合題意;十字路口的交通信號燈有紅、黃、綠三種顏色,所以開車經過十字路口時,恰好遇到黃燈的概率不是,與三種燈的閃爍時間相關,故D不符合題意;故選A【考點】本題考查的是必然事件的含義,調查方式的選擇,簡單隨機事件的概率,三角形的內角和定理的含義,掌握“以上基礎知識”是解本題的關鍵.2、B【解析】【分析】由三角形內角和定理解得,再根據角平分線的性質解得,最后根據三角形內角和定理解答即可.【詳解】解:、都是的角平分線,故選:B.【考點】本題考查角平分線的性質、三角形內角和定理等知識,是基礎考點,掌握相關知識是解題關鍵.3、C【解析】【分析】根據平行線的判定定理求解,即可求得答案.【詳解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的條件是①③④.故選:C.【考點】本題考查平行線的判定定理:1.同旁內角互補,兩直線平行;2.同位角相等,兩直線平行;3.內錯角相等,兩直線平行.4、A【解析】【分析】∠B與∠C是直線AB,CD被直線BC所截構成的同旁內角,根據∠B+∠C=180°,得到AB∥CD.【詳解】∵∠B+∠C=180°,∴AB∥CD(同旁內角互補,兩直線平行).故選A.【考點】正解找出“三線八角”中的同位角、內錯角、同旁內角是正確答題的關鍵,不能遇到相等或互補關系的角就誤認為具有平行關系,只有同位角相等、內錯角相等、同旁內角互補,才能推出兩被截直線平行.5、B【解析】【分析】利用三角形外角的性質,得到∠ACD與∠ABD的關系,然后用角平分線的性質得到角相等的關系,代入計算即可得到答案.【詳解】解:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.設AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故選B.【考點】本題綜合考查角平分線的性質、三角形外角的性質、三角形內角和等知識點.解題的關鍵是熟練的運用所學性質去求解.6、B【解析】【分析】由三角形的內角和,得,由鄰補角的性質得,根據折疊的性質得,即,所以,.【詳解】解:∵,∴,∴,由折疊的性質可得:,∴,∵,∴,即.故選B.【考點】本題考查了三角形的內角和定理、鄰補角的性質、折疊的性質,熟悉掌握三角形的內角和為,互為鄰補角的兩個角之和為以及折疊的性質是本題的解題關鍵.7、C【解析】【分析】根據,可得再根據三角形內角和即可得出答案.【詳解】由圖可得∵,∴∴故選:C.【考點】本題考查了平行線的性質和三角形的內角和,掌握平行線的性質和三角形的內角和是解題的關鍵.8、D【解析】【詳解】解:如圖所示,根據圖中直線a、b被c所截形成的內錯角相等,可得依據為內錯角相等,兩直線平行.故選D.二、填空題1、AB∥CD【解析】【詳解】∵AB⊥BC,BC⊥CD,∴∠ABC=∠BCD=90°,∴AB∥CD,故答案為AB∥CD.2、或或【解析】【分析】根據,的角平分線交于點,可求得,延長至,根據為的外角的角平分線,可得是的外角的平分線,根據平分,得到,則有,可得,可求得;再根據,分四種情況:①;②;③;④,分別討論求解即可.【詳解】解:外角,的角平分線交于點,∴;如圖示,延長至,為的外角的角平分線,是的外角的平分線,,平分,,,,即,又,∴,即;;如果中,存在一個內角等于另一個內角的2倍,那么分四種情況:①,則,;②,則,,;③,則,解得;④,則,解得.綜上所述,的度數(shù)是或或.【考點】本題是三角形綜合題,考查了三角形內角和定理、外角的性質,角平分線定義等知識;靈活運用三角形的內角和定理、外角的性質進行分類討論是解題的關鍵.3、95【解析】【詳解】∵MF//AD,F(xiàn)N//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案為:954、55【解析】【分析】根據三角形內角和定理可知,要求∠A只要求出∠AEF+∠AFE的度數(shù)即可.【詳解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°?235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形內角和定理)∴∠A=180°?125°=55°,故答案為:55°【考點】本題是有關三角形角的計算問題.主要考察三角形內角和定理的應用和計算,找到∠A所在的三角形是關鍵.5、

-2

-3

-4【解析】【分析】根據題意選擇a、b、c的值,即可得出答案,答案不唯一.【詳解】解:當a=﹣2,b=﹣3,c=﹣4時,﹣2>﹣3>﹣4,則(﹣2)+(﹣3)<(﹣4),∴命題若a>b>c,則a+b>c”是錯誤的;故答案為:﹣2,﹣3,﹣4.【考點】本題考查了命題與定理,要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.6、如果兩個角是同一個角的余角,那么這兩個角相等【解析】【詳解】根據命題的特點,可以改寫為:“如果兩個角是同一個角的余角,那么這兩個角相等”故答案為:如果兩個角是同一個角的余角,那么這兩個角相等.【考點】本題考查了命題的特點,解題的關鍵是“如果”后面接題設,“那么”后面接結論.7、##54度【解析】【分析】根據翻折可得∠MAB=∠BAP,∠NAC=∠PAC,得∠MAB+∠NAC=90°,再由,即可解決問題.【詳解】解:根據翻折可知:∠MAB=∠BAP,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC180°=90°,∴∠MAB+∠NAC=90°,∵∠NAC=∠MAB,∴∠NAC+∠NAC=90°,∴∠NAC=54°.故答案為:54°.【考點】本題主要考查翻折變換,熟練掌握和應用翻折的性質是解題的關鍵.三、解答題1、(1)(2)(3)【解析】【分析】(1)根據題意證明,進而可得,根據,即可求解.繼而可得,即可求得;(2)根據全等三角形的性質可得,根據三角形內角和定理可得,進而根據即可求解.(3)根據(1)(2)的方法分類討論即可求解.(1)解:BD平分,,,,,,,,,,,故答案為:,(2)解:由(1)可知,,,,,,,(3)解:設,,,,,當點在點的左側時,,當點在點的右側時,,.【考點】本題考查了全等三角形的性質與判定,三角形的內角和定理的應用,掌握全等三角形的性質與判定是解題的關鍵.2、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據三角形內角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內角和可得結論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結論;(3)①延長OF到點M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據此即可證明結論;②利用①的結論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長OF到點M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點,∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過點O作CE,BD的垂線,分別交BC于點K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠ACE=∠OCK,∴∠AEO=∠OKC,∴∠BEO=∠BKO,∴△OBE≌△OBK(AAS),同理可得△ODC≌△OHC,∴EO=OK,OD=OH=EM,BE=BK,CD=CH.由(1)可知∠DOE=∠BOC=×90°+90°=135°,∴∠BOE=∠COD=45°,∴∠OEM=∠KOH=45°,∴△OME≌△KHO,∴KH=OM,∴KH=2OF.∵BC?BK?CH=KH=2OE,∴BC?BE?CD=KH=2OF;②解:∵△OME≌△KHO,∴∠EOM=∠OKH,∴FG⊥BC.由①可知KH=2OF=4,△ODF≌△MEF,∴S△DEO=S△OME=S△KHO=10,∴KH×OG×=10,∴OG=5.【考點】本題考查了角平分線的定義、三角形內角和定理、三角形全等的性質和判定.解題的關鍵是靈活運用所學知識解決問題.3、(1),;(2),見解析;(3)能,見解析【解析】【分析】(1)根據算術平方根和絕對值的非負性即可得出AD、BC的長度;(2)根據題意證明即可得出結果;(3)延長交直線于,先證明△AEB≌△FEB,然后證明,即可得出結果.【詳解】解:(1),,,解得,,即,;(2).理由如下:、分別平分和,,,,,,,;(3)能.理由如下:延長交直線于,如圖,,,而,,在△AEB和△FEB中,∴△AEB≌△FEB(AAS),AE=EF.在△ADE和△FCE中,,,.【考點】本題考查了算術平方根和絕對值的非負性,角平分線的定義,平行線的判定,全等三角形的判定與性質,熟知相關性質定理是解本題的關鍵.4、垂直的定義;等量代換;等式的性質1;內錯角相等,兩直線平行【解析】【分析】根據垂直定義得出,求出,根據平行線的判定推出即可.【詳解】解:因為(已知),所以(垂直的定義),同理.所以(等量代換),即.因為(已知),所以(等式的性質,所以(內錯角相等,兩直線平行).故答案為:垂直的定義;等量代換;等式的性質1;內錯角相等,兩直線平行【考點】本題考查了垂直定義和平行線的判定的應用,熟練掌握平行線的判定是解題關鍵.5、(1)證明見解析;(2).【解析】【分析】(1)利用三角形內角和定理求出,再利用折疊和角平分線的性質證明,即可證明;(2)利用三角形內角和定理求出,再利用對頂角相等證明,再利用三角形內角和定理即可求出.(1)證明:∵,,∴,∵AE平分,∴,∵,∴,∴,∴,(2)解:,∴,∵,且,∴.【考點】本題考查三角形內角和定理,折疊的性質,角平分線的性質,對頂角相等,(1)的關鍵是求出,證明;(2)的關鍵是求出.6、(1)124°(2)120°(3)90°+【解析】【分析】(1)根據角平分線定義求出∠OBC=,∠OCB=,然后利用三角形內角和公式求解即可;(2)根據∠A=60°,結合三角形內角和得出∠ABC+∠ACB=180°-∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論