益陽市八年級數(shù)學(xué)試卷易錯易錯壓軸勾股定理選擇題專題練習(xí)及答案_第1頁
益陽市八年級數(shù)學(xué)試卷易錯易錯壓軸勾股定理選擇題專題練習(xí)及答案_第2頁
益陽市八年級數(shù)學(xué)試卷易錯易錯壓軸勾股定理選擇題專題練習(xí)及答案_第3頁
益陽市八年級數(shù)學(xué)試卷易錯易錯壓軸勾股定理選擇題專題練習(xí)及答案_第4頁
益陽市八年級數(shù)學(xué)試卷易錯易錯壓軸勾股定理選擇題專題練習(xí)及答案_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

益陽市八年級數(shù)學(xué)試卷易錯易錯壓軸選擇題精選:勾股定理選擇題專題練習(xí)及答案(1)一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.在中,是直線上一點,已知,,,,則的長為()A.4或14 B.10或14 C.14 D.102.如圖是一塊長、寬、高分別為6cm、4cm、3cm的長方體木塊,一只螞蟻要從長方體木塊的一個頂點A處,沿著長方體的表面到長方體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是()A.cm B.cm C.cm D.9cm3.如圖,正方形ABCD的邊長為8,M在DC上,且DM=2,N是AC上的一動點,則DN+MN的最小值是()A.8 B.9 C.10 D.124.如圖中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為10cm,正方形A的邊長為6cm、B的邊長為5cm、C的邊長為5cm,則正方形D的邊長為()A.3cm B.cm C.cm D.4cm5.如圖,已知1號、4號兩個正方形的面積之和為7,2號、3號兩個正方形的面積之和為4,則a、b、c三個正方形的面積之和為()A.11 B.15 C.10 D.226.如圖,在△ABC中,∠C=90°,AD是△ABC的一條角平分線.若AC=6,AB=10,則點D到AB邊的距離為()A.2 B.2.5 C.3 D.47.在△ABC中,∠BCA=90°,AC=6,BC=8,D是AB的中點,將△ACD沿直線CD折疊得到△ECD,連接BE,則線段BE的長等于()A.5 B. C. D.8.如圖,在中,,的平分線與邊相交于點,,垂足為,若的周長為6,則的面積為().A.36 B.18 C.12 D.99.如圖,四邊形ABCD中,AC⊥BD于O,AB=3,BC=4,CD=5,則AD的長為()A.1 B.3 C.4 D.210.如圖,將一個等腰直角三角形按圖示方式依次翻折,若,則下列說法正確的是()①平分;②長為;③是等腰三角形;④的周長等于的長.A.①②③ B.②④ C.②③④ D.③④11.如圖,在四邊形ABCD中,,,,,分別以點A,C為圓心,大于長為半徑作弧,兩弧交于點E,作射線BE交AD于點F,交AC于點O.若點O是AC的中點,則CD的長為()A. B.6 C. D.812.已知長方體的長2cm、寬為1cm、高為4cm,一只螞蟻如果沿長方體的表面從A點爬到B′點,那么沿哪條路最近,最短的路程是()A.cm B.5cm C.cm D.4.5cm13.以線段、b、c的長為邊長能構(gòu)成直角三角形的是()A.=3,b=4,c=6 B.=1,b=,c=C.=5,b=6,c=8 D.=,b=2,c=14.如圖是我國一位古代數(shù)學(xué)家在注解《周髀算經(jīng)》時給出的,曾被選為2002年在北京召開的國際數(shù)學(xué)家大會的會徽,它通過對圖形的切割、拼接,巧妙地證明了勾股定理,這位偉大的數(shù)學(xué)家是()A.楊輝 B.劉徽 C.祖沖之 D.趙爽15.下列四組數(shù)中不能構(gòu)成直角三角形的一組是()A.1,2, B.3,5,4 C.5,12,13 D.3,2,16.已知是的三邊,且滿足,則是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰三角形或直角三角形17.下列結(jié)論中,矩形具有而菱形不一定具有的性質(zhì)是()A.內(nèi)角和為360° B.對角線互相平分 C.對角線相等 D.對角線互相垂直18.如圖,長方體的長為15cm,寬為10cm,高為20cm,點B離點C5cm,一只螞蟻如果要沿著長方體的表面從點A爬到點B去吃一滴蜜糖,需要爬行的最短距離是()cm.A.25 B.20 C.24 D.1019.如圖,透明的圓柱形玻璃容器(容器厚度忽略不計)的高為,在容器內(nèi)壁離容器底部的點處有一滴蜂蜜,此時一只螞蟻正好在容器外壁,位于離容器上沿的點處,若螞蟻吃到蜂蜜需爬行的最短路徑為,則該圓柱底面周長為()A. B. C. D.20.如圖,點的坐標是,若點在軸上,且是等腰三角形,則點的坐標不可能是()A.(2,0) B.(4,0)C.(-,0) D.(3,0)21.如圖,在△ABC,∠C=90°,AD平分∠BAC交CB于點D,過點D作DE⊥AB,垂足恰好是邊AB的中點E,若AD=3cm,則BE的長為()A.cm B.4cm C.3cm D.6cm22.如圖,是等邊三角形,點D.E分別為邊BC.AC上的點,且,點F是BE和AD的交點,,垂足為點G,已知,,則為()A.4 B.5 C.6 D.723.如圖,已知中,,,在BC邊上取一點P(點P不與點B、C重合),使得成為等腰三角形,則這樣的點P共有().A.1個 B.2個 C.3個 D.4個24.如圖:在△ABC中,∠B=45°,D是AB邊上一點,連接CD,過A作AF⊥CD交CD于G,交BC于點F.已知AC=CD,CG=3,DG=1,則下列結(jié)論正確的是()①∠ACD=2∠FAB②③④AC=AFA.①②③ B.①②③④ C.②③④ D.①③④25.已知△ABC的三邊分別是6,8,10,則△ABC的面積是()A.24 B.30 C.40 D.4826.如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結(jié)論有()A.0個 B.1個 C.2個 D.3個27.如圖,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,則BD的長為()A.3 B. C.2 D.428.如圖,在的正方形網(wǎng)格中,的度數(shù)是()A.22.5° B.30° C.45° D.60°29.如圖是由“趙爽弦圖”變化得到的,它由八個全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1、S2、S3.若S1+S2+S3=15,則S2的值是(

)A.3 B. C.5 D.30.如圖,在△ABC中,∠ACB=90°,AB的中垂線交AC于D,P是BD的中點,若BC=4,AC=8,則S△PBC為()A.3 B.3.3 C.4 D.4.5【參考答案】***試卷處理標記,請不要刪除一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.A解析:A【分析】根據(jù)AC=13,AD=12,CD=5,可判斷出△ADC是直角三角形,在Rt△ADB中求出BD,繼而可得出BC的長度.【詳解】∵AC=13,AD=12,CD=5,∴,∴△ABD是直角三角形,AD⊥BC,由于點D在直線BC上,分兩種情況討論:當(dāng)點D在線段BC上時,如圖所示,在Rt△ADB中,,則;②當(dāng)點D在BC延長線上時,如圖所示,在Rt△ADB中,,則.故答案為:A.【點睛】本題考查勾股定理和逆定理,需要分類討論,掌握勾股定理和逆定理的應(yīng)用為解題關(guān)鍵.2.C解析:C【解析】【分析】本題中螞蟻要跑的路徑有三種情況,知道當(dāng)螞蟻爬的是一條直線時,路徑才會最短.螞蟻爬的是一個長方形的對角線.展開成平面圖形,根據(jù)兩點之間線段最短,可求出解.【詳解】解:如圖1,當(dāng)爬的長方形的長是(4+6)=10,寬是3時,需要爬行的路徑的長==cm;如圖2,當(dāng)爬的長方形的長是(3+6)=9,寬是4時,需要爬行的路徑的長==cm;如圖3,爬的長方形的長是(3+4)=7時,寬是6時,需要爬行的路徑的長==cm.所以要爬行的最短路徑的長cm.故選C.【點睛】本題考查平面展開路徑問題,本題關(guān)鍵知道螞蟻爬行的路線不同,求出的值就不同,有三種情況,可求出值找到最短路線.3.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.【詳解】解:∵正方形是軸對稱圖形,點B與點D是關(guān)于直線AC為對稱軸的對稱點,∴連接BN,BD,則直線AC即為BD的垂直平分線,∴BN=ND∴DN+MN=BN+MN連接BM交AC于點P,∵點N為AC上的動點,由三角形兩邊和大于第三邊,知當(dāng)點N運動到點P時,BN+MN=BP+PM=BM,BN+MN的最小值為BM的長度,∵四邊形ABCD為正方形,∴BC=CD=8,CM=8?2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故選:C.【點睛】此題考查正方形的性質(zhì)和軸對稱及勾股定理等知識的綜合應(yīng)用,解題的難點在于確定滿足條件的點N的位置:利用軸對稱的方法.然后熟練運用勾股定理.4.B解析:B【解析】【分析】先求出SA、SB、SC的值,再根據(jù)勾股定理的幾何意義求出D的面積,從而求出正方形D的邊長.【詳解】解∵SA=6×6=36cm2,SB=5×5=25cm2,Sc=5×5=25cm2,又∵,∴36+25+25+SD=100,∴SD=14,∴正方形D的邊長為cm.故選:B.【點睛】本題考查了勾股定理,熟悉勾股定理的幾何意義是解題的關(guān)鍵.5.B解析:B【分析】由直角三角形的勾股定理以及正方形的面積公式不難發(fā)現(xiàn):a的面積等于1號的面積加上2號的面積,b的面積等于2號的面積加上3號的面積,c的面積等于3號的面積加上4號的面積,據(jù)此可以求出三個的面積之和.【詳解】利用勾股定理可得:,,∴故選B【點睛】本題主要考查勾股定理的應(yīng)用,熟練掌握相關(guān)性質(zhì)定理是解題關(guān)鍵.6.C解析:C【分析】作DE⊥AB于E,由勾股定理計算出可求BC=8,再利用角平分線的性質(zhì)得到DE=DC,設(shè)DE=DC=x,利用等等面積法列方程、解方程即可解答.【詳解】解:作DE⊥AB于E,如圖,在Rt△ABC中,BC==8,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設(shè)DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=6(8﹣x),解得x=3,即點D到AB邊的距離為3.故答案為C.【點睛】本題考查了角平分線的性質(zhì)和勾股定理的相關(guān)知識,理解角的平分線上的點到角的兩邊的距離相等是解答本題的關(guān)鍵..7.C解析:C【分析】根據(jù)勾股定理及直角三角形的中線、翻折得CD=DE=BD=5,CE=AC=6,作DH⊥BE于H,EG⊥CD于G,證明△DHE≌△EGD,利用勾股定理求出,即可得到BE.【詳解】∵∠BCA=90°,AC=6,BC=8,∴,∵D是AB的中點,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC,CE=AC=6,∴BD=DE,作DH⊥BE于H,EG⊥CD于G,∴∠DHE=∠EGD=90,∠EDH=∠BDE=(180-2∠EDC)=90-∠EDC,∴∠DEB=90-∠EDH=90-(90-∠EDC)=∠EDC,∵DE=DE,∴△DHE≌△EGD,∴DH=EG,EH=DG,設(shè)DG=x,則CG=5-x,∵=,∴,∴,∴,∴BE=2EH=,故選:C.【點睛】此題考查翻折的性質(zhì),勾股定理,等腰三角形的性質(zhì),將求BE轉(zhuǎn)換為求其一半的長度的想法是關(guān)鍵,由此作垂線,證明△DHE≌△EGD,由此求出BE的長度.8.D解析:D【分析】利用角平分定理得到DE=AD,根據(jù)三角形內(nèi)角和得到∠BDE=∠BDA,再利用角平分線定理得到BE=AB=AC,根據(jù)的周長為6求出AB=6,再根據(jù)勾股定理求出,即可求得的面積.【詳解】∵,∴AB⊥AD,∵,平分,∴DE=AD,∠BED=,∴∠BDE=∠BDA,∴BE=AB=AC,∵的周長為6,∴DE+CD+CE=AC+CE=BC=6,∵∴,∴,,∴的面積=,故選:D.【點睛】此題考查角平分線定理的運用,勾股定理求邊長,在利用角平分線定理時必須是兩個垂直一個平分同時運用,得到到角兩邊的距離相等的結(jié)論.9.B解析:B【分析】設(shè)OA=a,OB=b,OC=c,OD=d,根據(jù)勾股定理求出a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,即可證得a2+d2=18,由此得到答案.【詳解】設(shè)OA=a,OB=b,OC=c,OD=d,由勾股定理得,a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,則a2+b2+c2+b2+c2+d2=50,∴a2+d2+2(b2+c2)=50,∴a2+d2=50﹣16×2=18,∴AD=,故選:B.【點睛】此題考查勾股定理的運用,根據(jù)題中的已知條件得到直角三角形,再利用勾股定理求出未知的邊長,解題中注意直角邊與斜邊.10.B解析:B【分析】根據(jù)折疊前后得到對應(yīng)線段相等,對應(yīng)角相等判斷①③④式正誤即可,根據(jù)等腰直角三角形性質(zhì)求BC和DE的關(guān)系.【詳解】解:根據(jù)折疊的性質(zhì)知,△,且都是等腰直角三角形,∴,,∴不能平分①錯誤;,,,,,②正確;,,,,不是等腰三角形,故③錯誤;的周長,故④正確.故選:.【點睛】本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②等腰直角三角形,三角形外角與內(nèi)角的關(guān)系,等角對等邊等知識點.11.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出AF=FC.再根據(jù)ASA證明△FOA≌△BOC,那么AF=BC=3,等量代換得到FC=AF=3,利用線段的和差關(guān)系求出FD=AD-AF=1.然后在直角△FDC中利用勾股定理求出CD的長.【詳解】解:如圖,連接FC,∵點O是AC的中點,由作法可知,OE垂直平分AC,∴AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA與△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,F(xiàn)D=AD-AF=8-6=2.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+22=62,∴CD=.故選:A.【點睛】本題考查了作圖-基本作圖,勾股定理,線段垂直平分線的判定與性質(zhì),全等三角形的判定與性質(zhì),難度適中.求出CF與DF是解題的關(guān)鍵.12.B解析:B【分析】要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體展開,然后利用兩點之間線段最短解答.【詳解】解:根據(jù)題意,如圖所示,最短路徑有以下三種情況:(1)沿,,,剪開,得圖;(2)沿,,,,,剪開,得圖;(3)沿,,,,,剪開,得圖;綜上所述,最短路徑應(yīng)為(1)所示,所以,即.故選:B.【點睛】此題考查最短路徑問題,將長方體從不同角度展開,是解決此類問題的關(guān)鍵,注意不要漏解.13.B解析:B【分析】根據(jù)勾股定理的逆定理對四個選項進行逐一分析即可.【詳解】A、,C、,D、,故錯誤;B、,能構(gòu)成直角三角形,本選項正確.故選B.【點睛】本題考查了勾股定理的知識點,解題的關(guān)鍵是熟練的掌握勾股定理的定理與運算.14.D解析:D【分析】3世紀,漢代趙爽在注解《周髀算經(jīng)》時,通過對圖形的切割、拼接、巧妙地利用面積關(guān)系證明了勾股定理.【詳解】由題意,可知這位偉大的數(shù)學(xué)家是趙爽.故選D.【點睛】考查了數(shù)學(xué)常識,勾股定理的證明.3世紀我國漢代的趙爽在注解《周髀算經(jīng)》時給出的,人們稱它為“趙爽弦圖”.趙爽通過對這種圖形切割、拼接,巧妙地利用面積關(guān)系證明了著名的勾股定理.15.A解析:A【解析】A.

12+22≠()2,不能構(gòu)成直角三角形,故此選項符合題意;B.

32+42=52,能構(gòu)成直角三角形,故此選項不符合題意;C.

52+122=132,能構(gòu)成直角三角形,故此選項不符合題意;D.

32+22=()2,能構(gòu)成直角三角形,故此選項不符合題意;故選A.16.D解析:D【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,進而可得a=b或a2=b2+c2,進而判斷△ABC的形狀為等腰三角形或直角三角形.【詳解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形狀為等腰三角形或直角三角形.故選:D.【點睛】本題考查了勾股定理的逆定理以及等腰三角形的判定,解題時注意:有兩邊相等的三角形是等腰三角形,滿足a2+b2=c2的三角形是直角三角形.17.C解析:C【分析】矩形與菱形相比,菱形的四條邊相等、對角線互相垂直;矩形四個角是直角,對角線相等,由此結(jié)合選項即可得出答案.【詳解】A、菱形、矩形的內(nèi)角和都為360°,故本選項錯誤;B、對角互相平分,菱形、矩形都具有,故本選項錯誤;C、對角線相等菱形不具有,而矩形具有,故本選項正確D、對角線互相垂直,菱形具有而矩形不具有,故本選項錯誤,故選C.【點睛】本題考查了菱形的性質(zhì)及矩形的性質(zhì),熟練掌握矩形的性質(zhì)與菱形的性質(zhì)是解題的關(guān)鍵.18.A解析:A【分析】分三種情況討論:把左側(cè)面展開到水平面上,連結(jié)AB;把右側(cè)面展開到正面上,連結(jié)AB,;把向上的面展開到正面上,連結(jié)AB;然后利用勾股定理分別計算各情況下的AB,再進行大小比較.【詳解】把左側(cè)面展開到水平面上,連結(jié)AB,如圖1把右側(cè)面展開到正面上,連結(jié)AB,如圖2把向上的面展開到正面上,連結(jié)AB,如圖3∵∴∴需要爬行的最短距離為25cm故選:A.【點睛】本題考查了平面展開及其最短路徑問題:先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點之間的最短路徑.一般情況是兩點之間,線段最短.在平面圖形上構(gòu)造直角三角形解決問題.19.D解析:D【分析】將容器側(cè)面展開,建立A關(guān)于EG的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為所求.【詳解】解:如圖:將圓柱展開,EG為上底面圓周長的一半,作A關(guān)于E的對稱點A',連接A'B交EG于F,則螞蟻吃到蜂蜜需爬行的最短路徑為AF+BF的長,即AF+BF=A'B=20cm,延長BG,過A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:A'D=∴則該圓柱底面周長為24cm.故選:D.【點睛】本題考查了平面展開---最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進行計算是解題的關(guān)鍵.同時也考查了同學(xué)們的創(chuàng)造性思維能力.20.D解析:D【詳解】解:(1)當(dāng)點P在x軸正半軸上,①以O(shè)A為腰時,∵A的坐標是(2,2),∴∠AOP=45°,OA=,∴P的坐標是(4,0)或(,0);②以O(shè)A為底邊時,∵點A的坐標是(2,2),∴當(dāng)點P的坐標為:(2,0)時,OP=AP;(2)當(dāng)點P在x軸負半軸上,③以O(shè)A為腰時,∵A的坐標是(2,2),∴OA=,∴OA=AP=∴P的坐標是(-,0).故選D.21.A解析:A【分析】先根據(jù)角平分線的性質(zhì)可證CD=DE,從而根據(jù)“HL”證明Rt△ACD≌Rt△AED,由DE為AB中線且DE⊥AB,可求AD=BD=3cm,然后在Rt△BDE中,根據(jù)直角三角形的性質(zhì)即可求出BE的長.【詳解】∵AD平分∠BAC且∠C=90°,DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E為AB中點,∴AC=AE=AB,所以,∠B=30°.∵DE為AB中線且DE⊥AB,∴AD=BD=3cm,∴DE=BD=,∴BE=cm.故選A.【點睛】本題考查了角平分線的性質(zhì),線段垂直平分線的性質(zhì),全等三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì),及勾股定理等知識,熟練掌握全等三角形的判定與性質(zhì)是解答本題的關(guān)鍵.22.C解析:C【分析】結(jié)合等邊三角形得性質(zhì)易證△ABE≌△CAD,可得∠FBG=30°,BF=2FG=2,再求解∠ABE=15°,進而兩次利用勾股定理可求解.【詳解】∵△ABC為等邊三角形∴∠BAE=∠C=60°,AB=AC,CD=AE∴△ABE≌△CAD(SAS)∴∠ABE=∠CAD∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAF=∠BAC=60°,∵BG⊥AD,∴∠BGF=90°,∴∠FBG=30°,∵FG=1,∴BF=2FG=2,∵∠BEC=75°,∠BAE=60°,∴∠ABE=∠BEC﹣∠BAE=15°,∴∠ABG=45°,∵BG⊥AD,∴∠AGB=90°,∴AG=BG==,AB2=AG2+BG2=()2+()2=6.故選C.【點睛】本題考查全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),勾股定理,證明△ABG為等腰直角三角形是解題關(guān)鍵.23.B解析:B【分析】在BC邊上取一點P(點P不與點B、C重合),使得成為等腰三角形,分三種情況分析:、、;根據(jù)等腰三角形的性質(zhì)分別對三種情況逐個分析,即可得到答案.【詳解】根據(jù)題意,使得成為等腰三角形,分、、三種情況分析:當(dāng)時,點P位置再分兩種情況分析:第1種:點P在點O右側(cè),于點O∴設(shè)∴∵∴∴∴∴,不符合題意;第2種:點P在點O左側(cè),于點O設(shè)∴∴∴∴,點P存在,即;當(dāng)時,,點P存在;當(dāng)時,,即點P和點C重合,不符合題意;∴符合題意的點P共有:2個故選:B.【點睛】本題考查了等腰三角形、勾股定理、一元一次方程的知識;解題的關(guān)鍵是熟練掌握等腰三角形、勾股定理、一元一次方程的性質(zhì),從而完成求解.24.B解析:B【分析】過點C作于點H,根據(jù)等腰三角形的性質(zhì)得到,根據(jù)得到,可以證得①是正確的,利用勾股定理求出AG的長,算出三角形ACD的面積證明②是正確的,再根據(jù)角度之間的關(guān)系證明,得到④是正確的,最后利用勾股定理求出CF的長,得到③是正確的.【詳解】解:如圖,過點C作于點H,∵,∴,,∵,∴,∴,∴,故①正確;∵,,∴,∴,在中,,∴,故②正確;∵,,∴,∵,,∴,∵,,,∴,∴,故④正確;∴,在中,,故③正確.故選:B.【點睛】本題考查幾何的綜合證明,解題的關(guān)鍵是掌握等腰三角形的性質(zhì)和判定,勾股定理和三角形的外角和定理.25.A解析:A【解析】已知△ABC的三邊分別為6,10,8,由62+82=102,即可判定△ABC是直角三角形,兩直角邊是6,8,所以△ABC的面積為×6×8=24,故選A.26.D解析:D【解析】分析:由四邊形ABCD與四邊形EFGC都為正方形,得到四條邊相等,四個角為直角,利用SAS得到三角形BCE與三角形DCG全等,利用全等三角形對應(yīng)邊相等即可得到BE=DG,利用全等三角形對應(yīng)角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定義得到∠BOD為直角,利用勾股定理求出所求式子的值即可.詳解:①∵四邊形ABCD和EFGC都為正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故結(jié)論①正確.②如圖所示,設(shè)BE交DC于點M,交DG于點O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②結(jié)論正確.③如圖所示,連接BD、EG,由②知,BE⊥DG,則在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論