難點詳解人教版9年級數(shù)學上冊【旋轉(zhuǎn)】同步練習試卷(含答案詳解)_第1頁
難點詳解人教版9年級數(shù)學上冊【旋轉(zhuǎn)】同步練習試卷(含答案詳解)_第2頁
難點詳解人教版9年級數(shù)學上冊【旋轉(zhuǎn)】同步練習試卷(含答案詳解)_第3頁
難點詳解人教版9年級數(shù)學上冊【旋轉(zhuǎn)】同步練習試卷(含答案詳解)_第4頁
難點詳解人教版9年級數(shù)學上冊【旋轉(zhuǎn)】同步練習試卷(含答案詳解)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版9年級數(shù)學上冊【旋轉(zhuǎn)】同步練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(點D與A,B不重合),連結(jié)CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點F,連接BE.當AD=BF時,∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°2、2022年新年賀詞中提到“人不負青山,青山定不負人”,下列四個有關環(huán)保的圖形中,是軸對稱圖形,但不是中心對稱圖形的是(

)A. B. C. D.3、如圖,在方格紙中,將繞點按順時針方向旋轉(zhuǎn)90°后得到,則下列四個圖形中正確的是()A. B.C. D.4、如圖,將直角三角板繞頂點A順時針旋轉(zhuǎn)到,點恰好落在的延長線上,,則為(

)A. B. C. D.5、已知四邊形ABCD的對角線相交于點O,且OA=OB=OC=OD,那么這個四邊形是(

)A.是中心對稱圖形,但不是軸對稱圖形 B.是軸對稱圖形,但不是中心對稱圖形C.既是中心對稱圖形,又是軸對稱圖形 D.既不是中心對稱圖形,又不是軸對稱圖形6、如圖,菱形對角線交點與坐標原點重合,點,則點的坐標為(

)A. B. C. D.7、如圖,矩形ABCD繞點A逆時針旋轉(zhuǎn)α(0°<α<90°)得到矩形AB'C′D',此時點B′恰好在DC邊上,若∠B'BC=15°,則α的大小為()A.15° B.25° C.30° D.45°8、如圖,已知點O(0,0),P(1,2),將線段PO繞點P按順時針方向以每秒90°的速度旋轉(zhuǎn),則第19秒時,點O的對應點坐標為()A.(0,0) B.(3,1) C.(﹣1,3) D.(2,4)9、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(

)A. B. C. D.10、如圖,由個小正方形組成的田字格,的頂點都是小正方形的頂點,在田字格上能畫出與成軸對稱,且頂點都在小正方形頂點上的三角形的個數(shù)共有()A.2個 B.3個 C.4個 D.5個第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,將n個邊長都為1cm的正方形按如圖所示擺放,點A1,A2,…,An分別是正方形的中心,則n個正方形重疊形成的重疊部分的面積和為________2、如圖,將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段,那么的對應點的坐標是__________.3、若點與關于原點對稱,則=_______.4、如圖,在正方形中,頂點A,,,在坐標軸上,且,以為邊構造菱形(點在軸正半軸上),將菱形與正方形組成的圖形繞點逆時針旋轉(zhuǎn),每次旋轉(zhuǎn)45°,則第2022次旋轉(zhuǎn)結(jié)束時,點的坐標為______.5、在平面直角坐標系內(nèi),點A(,2)關于原點中心對稱的點的坐標是______.6、點與點關于原點對稱,則點的坐標是_________.7、如圖,把正方形鐵片OABC置于平面直角坐標系中,頂點A的坐標為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點P的坐標為____________________.8、如圖,點E是正方形ABCD邊BC上一點,連接AE,將△ABE繞著點A逆時針旋轉(zhuǎn)到△AFG的位置(點F在正方形ABCD內(nèi)部),連接DG.若AB=10,BE=6,,則CH=___.9、如圖,在正方形網(wǎng)格中,格點繞某點順時針旋轉(zhuǎn)角得到格點,點與點,點與點,點與點是對應點,則_____度.10、兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點重合在點O處,AB=13,CD=7.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉(zhuǎn)a(0α90°),如圖2所示.當BD與CD在同一直線上(如圖3)時,則△ABC的面積為____.三、解答題(6小題,每小題5分,共計30分)1、如圖,點E為正方形外一點,,將繞A點逆時針方向旋轉(zhuǎn)得到的延長線交于H點.(1)試判定四邊形的形狀,并說明理由;(2)已知,求的長.2、如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點).(1)畫出△ABC關于點C成中心對稱的△A'B'C(其中A'是點A的對應點,B'是點B的對應點);(2)用無刻度的直尺作出一個格點O,使得OA=OB.3、如圖,在平面直角坐標系中,拋物線M的表達式為y=﹣x2+2x,與x軸交于O、A兩點,頂點為點B.(1)求證:△OAB為等腰直角三角形:(2)已知點P在y軸上,且OP=1,點C在第一象限,△ABC為等腰直角三角形,將拋物線M進行平移,使其對稱軸經(jīng)過點C,請問平移后的拋物線能否經(jīng)過點P?如果能,求出平移方式;如果不能,說明理由.4、如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是,,.(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應的;平移△ABC,若點A對應的點的坐標為,畫出.(2)若,繞某一點旋轉(zhuǎn)可以得到(1)中的,直接寫出旋轉(zhuǎn)中心的坐標:______;5、如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內(nèi),的三個頂點分別為,,.(1)畫出關于原點對稱的,并寫出點的坐標;(2)畫出繞點順時針旋轉(zhuǎn)后得到的,并寫出點的坐標.6、如圖1,直線上有一點O,過點O在直線上方作射線.將一直角三角板的直角頂點放在點O處,一條直角邊在射線上,另一邊在直線上方.將直角三角板繞著點O按每秒的速度逆時針旋轉(zhuǎn)一周,設旋轉(zhuǎn)時間為t秒.(1)當直角三角板旋轉(zhuǎn)到如圖2的位置時,恰好平分,此時,與之間有何數(shù)量關系?并說明理由;(2)在旋轉(zhuǎn)的過程中,若射線的位置保持不變,且.①當邊與射線相交時(如圖3),則的值為_______;②當邊所在的直線與平行時,求t的值.-參考答案-一、單選題1、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關鍵是熟練運用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準確判定三角形全等,從而利用全等三角形性質(zhì)解決相應的問題.2、D【解析】【分析】軸對稱圖形:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關于這個點成中心對稱.根據(jù)軸對稱圖形、和中心對稱圖形的概念,即可完成解題.【詳解】解:根據(jù)軸對稱和中心對稱的概念,選項A、B、C、D中,是軸對稱圖形的是B、D,是中心對稱圖形的是B.故選:D.【考點】本題主要軸對稱圖形、中心對稱圖形的概念,熟練掌握知識點是解答本題的關鍵.3、B【解析】【分析】根據(jù)繞點按順時針方向旋轉(zhuǎn)90°逐項分析即可.【詳解】A、是由關于過B點與OB垂直的直線對稱得到,故A選項不符合題意;B、是由繞點按順時針方向旋轉(zhuǎn)90°后得到,故B選項符合題意;C、與對應點發(fā)生了變化,故C選項不符合題意;D、是由繞點按逆時針方向旋轉(zhuǎn)90°后得到,故D選項不符合題意.故選:B.【考點】本題考查旋轉(zhuǎn)變換.解題的關鍵是弄清旋轉(zhuǎn)的方向和旋轉(zhuǎn)的度數(shù).4、B【解析】【分析】根據(jù)直角三角形兩銳角互余,求出的度數(shù),由旋轉(zhuǎn)可知,在根據(jù)平角的定義求出的度數(shù)即可.【詳解】∵,∴,∵由旋轉(zhuǎn)可知,∴,故答案選:B.【考點】本題考查直角三角形的性質(zhì)以及圖形的旋轉(zhuǎn)的性質(zhì),找出旋轉(zhuǎn)前后的對應角是解答本題的關鍵.5、C【解析】【分析】先根據(jù)已知條件OA=OB=OC=OD,可知四邊形ABCD的對角線相等且互相平分,得出四邊形ABCD是矩形,然后根據(jù)矩形的對稱性,得出結(jié)果.【詳解】解:如圖所示:∵四邊形ABCD的對角線相交于點O且OA=OB=OC=OD,∴OA=OC,OB=OD;AC=BD,∴四邊形ABCD是矩形,∴四邊形ABCD既是軸對稱圖形,又是中心對稱圖形.故選:C.【考點】本題主要考查了矩形的判定及矩形的對稱性.對角線相等且互相平分的四邊形是矩形,矩形既是軸對稱圖形,又是中心對稱圖形.6、B【解析】【分析】根據(jù)菱形的中心對稱性,A、C坐標關于原點對稱,利用橫反縱也反的口訣求解即可.【詳解】∵菱形是中心對稱圖形,且對稱中心為原點,∴A、C坐標關于原點對稱,∴C的坐標為,故選C.【考點】本題考查了菱形的中心對稱性質(zhì),原點對稱,熟練掌握菱形的性質(zhì),關于原點對稱點的坐標特點是解題的關鍵.7、C【解析】【分析】由矩形的性質(zhì),可知∠ABC=90°,再由旋轉(zhuǎn),可知△ABB’為等腰三角形,根據(jù)內(nèi)角和求解即可.【詳解】解:連接BB′.∵四邊形ABCD是矩形,∴∠ABC=90°,∵∠CBB′=15°,∴∠ABB′=90°-15°=75°,∵AB=AB′,∴∠ABB′=∠AB′B=75°,∴∠BAB′=180°-2×75°=30°,∴α=30°,故選:C.【考點】本題考查旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),等腰三角形的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題.8、B【解析】【分析】依據(jù)線段PO繞點P按順時針方向以每秒90°的速度旋轉(zhuǎn),即可得到19秒后點O旋轉(zhuǎn)到點O'的位置,再根據(jù)全等三角形的對應邊相等,即可得到點O的對應點O'的坐標.【詳解】解:如圖所示,∵線段PO繞點P按順時針方向以每秒90°的速度旋轉(zhuǎn),每4秒一個循環(huán),19=4×4+3,∴3×90°=270°,∴19秒后點O旋轉(zhuǎn)到點O'的位置,∠OPO'=90°,如圖所示,過P作MN⊥y軸于點M,過O'作O'N⊥MN于點N,則∠OMP=∠PNO'=90°,∠POM=∠O'PN,OP=PO',在△OPM和△PO'N中,,∴△OPM≌△PO'N(AAS),∴O'N=PM=1,PN=OM=2,∴MN=1+2=3,點O'離x軸的距離為2-1=1,∴點O'的坐標為(3,1),故選:B.【考點】本題主要考查了坐標與圖形變化,圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.9、D【解析】【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷即可.【詳解】解:A、是中心對稱圖形,但不是軸對稱圖形,不符合題意;B、是軸對稱圖像,但不是中心對稱圖形,不符合題意;C、是軸對稱圖形,但不是中心對稱圖形,不符合題意;D、是軸對稱圖形,也是中心對稱圖形,符合題意;故選:D【考點】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合,掌握以上知識是解題的關鍵.10、C【解析】【分析】因為頂點都在小正方形上,故可分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸進行尋找.【詳解】分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸,作軸對稱圖形:則△ABM、△ANB、△EHF、△EFC都是符合題意的三角形.故選:C.【考點】考查了利用軸對稱涉及圖案的知識,關鍵是根據(jù)要求頂點在格點上尋找對稱軸,有一定難度,不要漏解.二、填空題1、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為n-1陰影部分的和.【詳解】由題意可得陰影部分面積等于正方形面積的,即是,5個這樣的正方形重疊部分(陰影部分)的面積和為×4,n個這樣的正方形重疊部分(陰影部分)的面積和為×(n-1)=cm2.【考點】本題考查了正方形的性質(zhì),熟悉正方形的性質(zhì)是解題關鍵.2、【解析】【分析】過點A作軸,垂足為C,過點作軸,垂足為,證明,所以,根據(jù)得到,所以,寫出對應點的坐標即可.【詳解】解:如圖,過點A作軸,垂足為C,過點作軸,垂足為,∵軸,軸,∴,∵將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段,∴,∵,,∴,∴,∴,∵,∴,∴,∴,故答案為:.【考點】本題考查旋轉(zhuǎn)的性質(zhì),證明是解答本題的關鍵.3、##0.5##【解析】【詳解】解:∵點(a,1)與(﹣2,b)關于原點對稱,∴b=﹣1,a=2,∴==.故答案為:.4、【解析】【分析】根據(jù)直角坐標系、正方形的性質(zhì),得,,根據(jù)勾股定理的性質(zhì),得;根據(jù)菱形的性質(zhì),得;根據(jù)圖形規(guī)律和旋轉(zhuǎn)的性質(zhì)分析,即可得到答案.【詳解】∵正方形中,頂點A,,,在坐標軸上,且∴,∴以為邊構造菱形(點在軸正半軸上),∴∴根據(jù)題意,得菱形與正方形組成的圖形繞點逆時針旋轉(zhuǎn),每8次一個循環(huán)∵除以8,余數(shù)為6∴點的坐標和點的坐標相同根據(jù)題意,第2次旋轉(zhuǎn)結(jié)束時,即逆向旋轉(zhuǎn)時,點的坐標為:第4次旋轉(zhuǎn)結(jié)束時,即逆向旋轉(zhuǎn)時,點的坐標為:第6次旋轉(zhuǎn)結(jié)束時,即逆向旋轉(zhuǎn)時,點的坐標為:∴點的坐標為:故答案為:.【考點】本題考查了圖形規(guī)律、旋轉(zhuǎn)、菱形、正方形、勾股定理、直角坐標系的知識;解題的關鍵是熟練掌握旋轉(zhuǎn)、菱形、正方形的性質(zhì),從而完成求解.5、(﹣,﹣2)【解析】【分析】關于原點中心對稱的點的坐標特征是:橫坐標、縱坐標均變?yōu)樵瓟?shù)的相反數(shù)【詳解】解:點A(,2)關于原點中心對稱的點的坐標是(﹣,﹣2).故答案為:(﹣,﹣2).【考點】本題考查關于原點中心對稱的點的坐標特征,是重要考點,難度較易,掌握相關知識是解題關鍵.6、(﹣2,﹣1).【解析】【分析】根據(jù)兩個點關于原點對稱時,它們的坐標符號相反可得答案.【詳解】∵點A(2,1)與點B關于原點對稱,∴點B的坐標是(﹣2,﹣1),故答案為(﹣2,﹣1).【考點】本題考查了關于原點對稱的點的坐標.7、(6053,2).【解析】【分析】根據(jù)前四次的坐標變化總結(jié)規(guī)律,從而得解.【詳解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…發(fā)現(xiàn)點P的位置4次一個循環(huán),∵2017÷4=504余1,P2017的縱坐標與P1相同為2,橫坐標為5+3×2016=6053,∴P2017(6053,2),故答案為(6053,2).考點:坐標與圖形變化﹣旋轉(zhuǎn);規(guī)律型:點的坐標.8、【解析】【分析】由“HL”可證,可得,由“AAS”可證,可得,可得,再由勾股定理可求AP、FN、DH,即可求解.【詳解】如圖,連接AH,過點F作FN⊥CD于點N,F(xiàn)P⊥AD于點P,將△ABE繞著點A逆時針旋轉(zhuǎn)到△AFG的位置,,,四邊形ABCD是正方形,,,又,,,,,,,,,,F(xiàn)N⊥CD,F(xiàn)P⊥AD,,四邊形PDNF是矩形,,,,,,,,故答案為:.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì)、矩形的判定與性質(zhì),全等三角形的判定和性質(zhì)及勾股定理,熟練掌握知識點是解題的關鍵.9、【解析】【分析】先連接,,作,的垂直平分線交于點,連接,,再由題意得到旋轉(zhuǎn)中心,由旋轉(zhuǎn)的性質(zhì)即可得到答案.【詳解】如圖,連接,,作,的垂直平分線交于點,連接,,∵,的垂直平分線交于點,∴點是旋轉(zhuǎn)中心,∵,∴旋轉(zhuǎn)角.故答案為.【考點】本題考查旋轉(zhuǎn),解題的關鍵是掌握旋轉(zhuǎn)的性質(zhì).10、30【解析】【分析】設AO與BC的交點為點G,根據(jù)等腰直角三角形的性質(zhì)證△AOC≌△BOD,進而得出△ABC是直角三角形,設AC=x,BC=x+7,由勾股定理求出x,再計算△ABC的面積即可.【詳解】解:設AO與BC的交點為點G,∵∠AOB=∠COD=90°,∴∠AOC=∠DOB,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴AC=BD,∠CAO=∠DBO,∵∠DBO+∠OGB=90°,∵∠OGB=∠AGC,∴∠CAO+∠AGC=90°,∴∠ACG=90°,∴CG⊥AC,設AC=x,則BD=AC=x,BC=x+7,∵BD、CD在同一直線上,BD⊥AC,∴△ABC是直角三角形,∴AC2+BC2=AB2,,解得x=5,即AC=5,BC=5+7=12,在直角三角形ABC中,S=,故答案為:30.【考點】本題考查旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識,解題的關鍵是正確尋找全等三角形,利用全等三角形的性質(zhì)解決問題.三、解答題1、(1)正方形,理由見解析;(2)17【解析】【分析】(1)由旋轉(zhuǎn)的性質(zhì)可得∠AEB=∠AFD=90°,AE=AF,∠DAF=∠EAB,由正方形的判定可證四邊形BE'FE是正方形;(2)連接,利用勾股定理可求,再利用勾股定理可求DH的長.【詳解】解:(1)四邊形是正方形,理由如下:根據(jù)旋轉(zhuǎn):∵四邊形是正方形∴∠DAB=90°∴∠FAE=∠DAB=90°∴∴四邊形是矩形,又∵∴矩形是正方形.(2)連接∵,在中,∵四邊形是正方形∴在中,,又,∴.故答案是17.【考點】本題是四邊形綜合題,考查了正方形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理,全等三角形的判定和性質(zhì),等腰三角形的性質(zhì)等知識,靈活運用這些性質(zhì)進行推理是本題的關鍵.2、(1)詳見解析(2)詳見解析【解析】【分析】(1)根據(jù)中心對稱定義作圖即可;(2)作AB的垂直平分線即可;(1)解:如圖,△A'B'C為所作;(2)解:如圖,點O或O′為所作.【考點】本題考查了復雜-作圖,掌握中心對稱和垂直平分線的定義和畫法是解題關鍵3、(1)見詳解(2)將拋物線M向右平移個單位,再向上平移個點,得過點C1和點P的拋物線;拋物線M向右平移個單位,再向上平移得出過點C2和點P的拋物線;拋物線M向右平移個單位。再向上平移個單位,得點過點C3與P的拋物線【解析】【分析】(1)將拋物線M配方為頂點式得出拋物線的對稱軸為x=2,拋物線的頂點B(2,2),然后求出點A(4,0),根據(jù)對稱軸求出點E(2,O),BE⊥OA,證明△OEB為等腰直角三角形,再證△AEB為等腰直角三角形即可;(2)根據(jù)△ABC為等腰直角三角形,分以下三種情況,以AB為直角邊,點B為直角頂點,將AB繞點B逆時針旋轉(zhuǎn)90°,得出點C1(4,4)將拋物線M向右平移2個單位,再向上平移2個點,得出以C1為頂點的拋物線為,以AB為直角邊,以點A直角頂點,將AB繞點A順時針旋轉(zhuǎn)90°,得AC2,求出點C2(6,2),拋物線M向右平移4個單位得出過頂點C2的拋物線;以AB為斜邊,點C3為直角頂點,點C3在AC1的中點,C3(4,2)即可.(1)解:拋物線M的表達式為,∴拋物線的對稱軸為x=2,拋物線的頂點B(2,2),拋物線與x軸的交點,解得:,∴點A(4,0),∵拋物線對稱軸為x=2,∴點E(2,O),BE⊥OA,∵OE=BE=2,∠OEB=90°,∴△OEB為等腰直角三角形,∴∠BOE=∠OBE=45°,∵AE=OA-OE=4-2=2,∴BE=AE,∠AEB=90°,∴△AEB為等腰直角三角形,∴∠EBA=∠EAB=45°,∴∠BOE=∠OBE=∠EBA=∠EAB=45°,∴OB=AB,∠OBA=∠OBE+∠ABE=45°+45°=90°,∴△OAB為等腰直角三角形(2)解:∵△ABC為等腰直角三角形,分以下三種情況,以AB為直角邊,點B為直角頂點,將AB繞點B逆時針旋轉(zhuǎn)90°,∴∠BAC1=45°,∴∠CAO=∠OAB+∠C1AB=45°+45°=90°,∴CA⊥x軸,∵∠OBA+∠ABC1=90°+90°=180°,∴點O、B、C1三點共線,∵∠C1OA=45°,∴△OAC1為等腰直角三角形,∴C1A=OA=4,∴點C1(4,4)∵OP=1,∴點P(0,1)設過點P與C1形狀與M斜體的拋物線解析式為,代入坐標得解得∴,將拋物線M向右平移個單位,再向上平移個點,得過點C1和點P的拋物線以AB為直角邊,以點A直角頂點,將AB繞點A順時針旋轉(zhuǎn)90°,得AC2,∵∠C2BA=45°=∠BAO,∴BC2∥OA,∠OBA=∠C2AB,∴AC2∥OB,∴四邊形OBC2A,∴BC2=OA=4,∴點C2橫坐標為OE+BC2=2+4=6,∴點C2(6,2),∴點P(0,1)設過點P與C2形狀與M斜體的拋物線解析式為,代入坐標得解得∴∴,∴拋物線M向右平移個單位,再向上平移得出過點C2和點P的拋物線;以AB為斜邊,點C3為直角頂點,點C3在AC1的中點,C3(4,2)∵點P(0,1)設過點P與C3形狀與M斜體的拋物線解析式為,代入坐標得解得∴∴,∴拋物線M向右平移個單位。再向上平移個單位,得點過點C3與P的拋物線【考點】本題考查圖形與坐標,待定系數(shù)法求拋物線解析式,二次函數(shù)的性質(zhì),等腰直角三角形,圖形旋轉(zhuǎn),拋物線平移,掌握圖形與坐標,待定系數(shù)法求拋物線解析式,二次函數(shù)的性質(zhì),等腰直角三角形,圖形旋轉(zhuǎn),拋物線平移是解題關鍵.4、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論