強化訓練-人教版8年級數(shù)學上冊《全等三角形》綜合訓練練習題(含答案詳解)_第1頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》綜合訓練練習題(含答案詳解)_第2頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》綜合訓練練習題(含答案詳解)_第3頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》綜合訓練練習題(含答案詳解)_第4頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》綜合訓練練習題(含答案詳解)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》綜合訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在中,點D是BC邊上一點,已知,,CE平分交AB于點E,連接DE,則的度數(shù)為(

)A. B. C. D.2、某同學把一塊三角形的玻璃打碎成了3塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的方法是(

).A.帶①去 B.帶②去 C.帶③去 D.①②③都帶3、下列語句中正確的是()A.斜邊和一銳角對應相等的兩個直角三角形全等B.有兩邊對應相等的兩個直角三角形全等C.有兩個角對應相等的兩個直角三角形全等D.有一直角邊和一銳角對應相等的兩個直角三角形全等4、如圖,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,,,則,滿足關系(

)A. B. C. D.5、如圖,在和中,,連接交于點,連接.下列結論:①;②;③平分;④平分.其中正確的個數(shù)為().A.4 B.3 C.2 D.1第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在和中,,,直線交于點M,連接.以下結論:①;②;③;④平分.其中正確的是___________(填序號).2、如圖,中,以點O為圓心,任意長為半徑作弧,交于點M,交于點N,分別以點M,N為圓心,以大于的長為半徑作弧,兩弧交于點C,作射線,過點C作于點D.交于點E,若,則的度數(shù)為_______________.3、如圖,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,則∠C1=______°.4、如圖,在中,,AD是的角平分線,過點D作,若,則______.5、如圖,,,若,則線段長為______.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,,點在的延長線上,于點,若,求證:.2、已知:如圖,點A,D,C,B在同一條直線上,AD=BC,AE=BF,CE=DF,求證:(1)△AEC≌△BFD(2)DE=CF3、在中,,直線經(jīng)過點C,且于D,于E,(1)當直線繞點C旋轉到圖1的位置時,顯然有:(不必證明);(2)當直線繞點C旋轉到圖2的位置時,求證:;(3)當直線MN繞點C旋轉到圖3的位置時,試問、、具有怎樣的等量關系?請直接寫出這個等量關系.4、如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高.(1)求證:AD垂直平分EF;(2)若AB+AC=10,S△ABC=15,求DE的長.5、如圖,在中,D是邊上的點,,垂足分別為E,F(xiàn),且.求證:.-參考答案-一、單選題1、B【解析】【分析】過點E作于M,于N,于H,如圖,先計算出,則AE平分,根據(jù)角平分線的性質得,再由CE平分得到,則,于是根據(jù)角平分線定理的逆定理可判斷DE平分,再根據(jù)三角形外角性質解答即可.【詳解】解:過點E作于M,于N,于H,如圖,∵,,∴,∴平分,∴,∵平分,∴,∴,∴平分,∴,∵由三角形外角可得:,,∴,而,∴.故選:B.【考點】本題考查了角平分線的性質和判定定理,三角形的外角性質定理,解決本題的關鍵是運用角平分線定理的逆定理證明DE平分.2、C【解析】【分析】根據(jù)三角形全等的判定定理判斷即可.【詳解】帶③去,理由如下:∵③中滿足ASA的條件,∴帶③去,故選C.【考點】本題考查了三角形全等的判定,熟練掌握三角形全等的判定定理是解題的關鍵.3、A【解析】【分析】根據(jù)全等三角形的判定定理,用排除法以每一個選項進行分析從而確定最終答案.【詳解】A、正確,利用AAS來判定全等;B、不正確,兩邊的位置不確定,不一定全等;C、不正確,兩個三角形不一定全等;D、不正確,有一直角邊和一銳角對應相等不一定能推出兩直角三角形全等,沒有相關判定方法對應.故選A【考點】本題考核知識點:全等三角形的判定.解題關鍵點:熟記全等三角形的相關判定.4、C【解析】【分析】根據(jù)△△,證得,=,再利用∥BC得到=,再根據(jù)三角形內角和定理即可得到結論.【詳解】∵△△,∴,∠ACB=,∴,=,∵∥BC,∴=,∴,故選:C.【考點】此題考查旋轉圖形的性質,等腰三角形的性質,兩直線平行內錯角相等,三角形的內角和定理.5、B【解析】【分析】根據(jù)題意逐個證明即可,①只要證明,即可證明;②利用三角形的外角性質即可證明;④作于,于,再證明即可證明平分.【詳解】解:∵,∴,即,在和中,,∴,∴,①正確;∴,由三角形的外角性質得:∴°,②正確;作于,于,如圖所示:則°,在和中,,∴,∴,∴平分,④正確;正確的個數(shù)有3個;故選B.【考點】本題是一道幾何的綜合型題目,難度系數(shù)偏上,關鍵在于利用三角形的全等證明來證明線段相等,角相等.二、填空題1、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質得出∠OAC=∠OBD,由三角形的外角性質得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對應高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故④錯誤;即可得出結論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結合全等三角形的對應高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯誤;正確的個數(shù)有3個;故答案為:①②③.【考點】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質、三角形的外角性質、角平分線的判定等知識,證明三角形全等是解題的關鍵.2、65°或65度【解析】【分析】根據(jù)作圖先得出OC平分∠AOB,根據(jù),得出,根據(jù)為的外角,得出,即可求出,根據(jù),得出,即可求解.【詳解】解:根據(jù)作圖可知,OC平分∠AOB,∴,∵,,,為的外角,,,,,.故答案為:.【考點】本題主要考查了角平分線的基本作圖,平行線的性質,三角形外角的性質,直角三角形的性質,根據(jù)題意求出是解題的關鍵.3、30【解析】【分析】本題實際上是全等三角形的性質以及根據(jù)三角形內角和等于180°來求角的度數(shù).【詳解】∵△ABC≌△A1B1C1,∴∠C1=∠C,又∵∠C=180°-∠A-∠B=180°-110°-40°=30°,∴∠C1=∠C=30°.故答案為30.【考點】本題考查了全等三角形的性質;解答時,除必備的知識外,還應將條件和所求聯(lián)系起來,即將所求的角與已知角通過全等及三角形內角之間的關系聯(lián)系起來.4、7【解析】【分析】先利用角平分線性質證明CD=DE,再求出的值即可.【詳解】解:∵AD平分∠BAC交BC于點D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案為:7.【考點】本題主要考查了角平分線的性質,解題的關鍵是熟練掌握角平分線的性質.5、8【解析】【分析】過點D作DH⊥AC于H,由等腰三角形的性質可得AH=HC,∠DAC=∠DCA=30°,由直角三角形的性質可證DH=CF,由“AAS”可證△DHE≌△FCE,可得EH=EC,即可求解.【詳解】解:如圖,過點D作DH⊥AC于H,在△DHE和△FCE中,故答案為8.【考點】本題考查了全等三角形的判定和性質,等腰三角形的性質,添加恰當輔助線構造全等三角形是解題的關鍵.三、解答題1、證明見解析【解析】【分析】利用AAS證明,根據(jù)全等三角形的性質即可得到結論.【詳解】證明:∵,∴∠ADE=90°,∵,∴∠ACB=∠ADE,在和中,∴,∴AE=AB,AC=AD,∴AE-AC=AB-AD,即EC=BD.【考點】本題考查全等三角形的判定和性質,解題的關鍵是熟練掌握基本知識.2、(1)見解析(2)見解析【解析】【分析】(1)由線段的和差可得AC=BD,繼而利用“SSS”即可求證結論;(2)由(1)可知∠A=∠B,繼而利用“SAS”求證△AED≌△BFC,根據(jù)全等三角形的性質即可求證結論.(1)證明:∵AD=BC,∴AD+DC=BC+DC,即AC=BD,在△AEC和△BFD中,

∴△AEC≌△BFD(SSS),(2)由(1)可知△AEC≌△BFD,∴∠A=∠B,在△AED和△BFC中,,∴△AED≌△BFC(SAS),∴DE=CF【考點】本題考查了全等三角形的判定及其性質,解題的關鍵是能夠根據(jù)已知條件和隱藏條件正確選擇全等三角形的判定方法.3、(1)見解析;(2)見解析;(3)DE=BE-AD【解析】【分析】(1)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,由此即可證明△ADC≌△CEB,然后利用全等三角形的性質即可解決問題;(2)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以證明△ADC≌△CEB,然后利用全等三角形的性質也可以解決問題;(3)當直線MN繞點C旋轉到圖(3)的位置時,仍然△ADC≌△CEB,然后利用全等三角形的性質可以得到DE=BE-AD.【詳解】解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE-CD=AD-BE;(3)如圖3,∵△ABC中,∠ACB=90°,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD-CE=BE-AD;DE、AD、BE之間的關系為DE=BE-AD.【考點】此題需要考查了全等三角形的判定與性質,也利用了直角三角形的性質,是一個探究性題目,對于學生的能力要求比較高.4、(1)見解析;(2)【解析】【分析】(1)由角平分線的性質得DE=DF,再根據(jù)HL證明Rt△AED≌Rt△AFD,得AE=AF,從而證明結論;(2)根據(jù)DE=DF,得,代入計算即可.【詳解】(1)證明:∵AD是△ABC的角平分線,DE、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論