版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》同步練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點,則△AEF的面積為()A.2 B.3 C.4 D.52、平行四邊形中,,則的度數(shù)是()A. B. C. D.3、如圖,在矩形ABCD中,點E是BC的中點,連接AE,點F是AE的中點,連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.544、如圖,矩形ABCD的對角線AC和BD相交于點O,若∠AOD=120°,AC=16,則AB的長為()A.16 B.12 C.8 D.45、如圖,下列條件中,能使平行四邊形ABCD成為菱形的是()A. B. C. D.6、如圖,點E是△ABC內(nèi)一點,∠AEB=90°,D是邊AB的中點,延長線段DE交邊BC于點F,點F是邊BC的中點.若AB=6,EF=1,則線段AC的長為()A.7 B. C.8 D.97、四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,且滿足,則這個四邊形是()A.任意四邊形 B.平行四邊形 C.對角線相等的四邊形 D.對角線垂直的四邊形8、在中,AC與BD相交于點O,要使四邊形ABCD是菱形,還需添加一個條件,這個條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC9、如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE10、如圖,在中,,點,分別是,上的點,,,點,,分別是,,的中點,則的長為().A.4 B.10 C.6 D.8第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在正方形ABCD中,點M,N為CD,BC上的點,且DM=CN,AM與DN交于點P,連接AN,點Q為AN中點,連接PQ,若AB=10,DM=4,則PQ的長為__________________.2、判斷:(1)菱形的對角線互相垂直且相等____()____(2)菱形的對角線把菱形分成四個全等的直角三角形____()____3、正方形ABCD的邊長是8cm,點M在BC邊上,且MC=2cm,P是正方形邊上的一個動點,連接PB交AM于點N,當PB=AM時,PN的長是_____.4、在平行四邊形ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC的長為_____.5、如圖,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,點D在CB所在直線上運動,以AD為邊作等邊三角形ADE,則CB=___.在點D運動過程中,CE的最小值為___.6、如圖,在中,,點、、分別是三邊的中點,且,則的長度是__________.7、一個矩形的兩條對角線所夾的銳角是60°,這個角所對的邊長為10cm,則該矩形的面積為_______.8、在直角墻角FOE中有張硬紙片正方形ABCD靠墻邊滑動,如圖所示,AD=2,A點沿墻往下滑動到O點的過程中,正方形的中心點M到O的最小值是______.9、如圖,已知在矩形中,,,將沿對角線AC翻折,點B落在點E處,連接,則的長為_________.10、如圖,在正方形紙片ABCD中,E是CD的中點,將正方形紙片折疊,點B落在線段AE上的點G處,折痕為AF.若,則CF的長為_____.三、解答題(5小題,每小題6分,共計30分)1、(探究發(fā)現(xiàn))(1)如圖1,△ABC中,AB=AC,∠BAC=90°,點D為BC的中點,E、F分別為邊AC、AB上兩點,若滿足∠EDF=90°,則AE、AF、AB之間滿足的數(shù)量關系是.(類比應用)(2)如圖2,△ABC中,AB=AC,∠BAC=120°,點D為BC的中點,E、F分別為邊AC、AB上兩點,若滿足∠EDF=60°,試探究AE、AF、AB之間滿足的數(shù)量關系,并說明理由.(拓展延伸)(3)在△ABC中,AB=AC=5,∠BAC=120°,點D為BC的中點,E、F分別為直線AC、AB上兩點,若滿足CE=1,∠EDF=60°,請直接寫出AF的長.2、如圖,中,對角線AC、BD相交于點O,點E,F(xiàn),G,H分別是OA、OB、OC、OD的中點,順次連接EFGH.(1)求證:四邊形EFGH是平行四邊形(2)若的周長為2(AB+BC)=32,則四邊形EFGH的周長為__________3、如圖所示,正方形中,點E,F(xiàn)分別為BC,CD上一點,點M為EF上一點,,M關于直線AF對稱.
(1)求證:B,M關于AE對稱;(2)若的平分線交AE的延長線于G,求證:.4、如圖,在中,過點作于點,點在邊上,,連接,.(1)求證:四邊形是矩形;(2)若,,,求證:平分.5、如圖:在中,,,點為的中點,點為直線上的動點(不與點,重合),連接,,以為邊在的上方作等邊,連接.(1)是________三角形;(2)如圖1,當點在邊上時,運用(1)中的結論證明;(3)如圖2,當點在的延長線上時,(2)中的結論是否依然成立?若成立,請加以證明,若不成立,請說明理由.-參考答案-一、單選題1、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點,即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點,∴,,,∴,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關的面積問題,解題的關鍵在于能夠熟練掌握平行四邊形的性質(zhì).2、B【解析】【分析】根據(jù)平行四邊形對角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點睛】本題考查了平行四邊形的性質(zhì),解題的關鍵是掌握平行四邊形的性質(zhì).3、C【解析】【分析】過點F作,分別交于M、N,由F是AE中點得,根據(jù),計算即可得出答案.【詳解】如圖,過點F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點E是BC的中點,∴,∵F是AE中點,∴,∴.故選:C.【點睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關鍵.4、C【解析】【分析】由題意可得AO=BO=CO=DO=8,可證△ABO是等邊三角形,可得AB=8.【詳解】解:∵四邊形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等邊三角形,∴AB=AO=BO=8,故選:C.【點睛】本題考查了矩形的性質(zhì),等邊三角形的性質(zhì)和判定,熟練掌握矩形的性質(zhì)是本題的關鍵.5、C【解析】【分析】根據(jù)菱形的性質(zhì)逐個進行證明,再進行判斷即可.【詳解】解:A、?ABCD中,本來就有AB=CD,故本選項錯誤;B、?ABCD中本來就有AD=BC,故本選項錯誤;C、?ABCD中,AB=BC,可利用鄰邊相等的平行四邊形是菱形判定?ABCD是菱形,故本選項正確;D、?ABCD中,AC=BD,根據(jù)對角線相等的平行四邊形是矩形,即可判定?ABCD是矩形,而不能判定?ABCD是菱形,故本選項錯誤.故選:C.【點睛】本題考查了平行四邊形的性質(zhì),菱形的判定的應用,注意:菱形的判定定理有:①有一組鄰邊相等的平行四邊形是菱形,②四條邊都相等的四邊形是菱形,③對角線互相垂直的平行四邊形是菱形.6、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長.【詳解】解:∵∠AEB=90,D是邊AB的中點,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點,點F是邊BC的中點,∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長是解題的關鍵.7、B【解析】【分析】根據(jù)完全平方公式分解因式得到a=b,c=d,利用邊的位置關系得到該四邊形的形狀.【詳解】解:,,,,∴a=b,c=d,∵四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,∴c、d是對邊,∴該四邊形是平行四邊形,故選:B.【點睛】此題考查了完全平方公式分解因式,平行四邊形的判定方法,熟練掌握完全平方公式分解因式是解題的關鍵.8、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時平行四邊形,AO⊥BO,∴是菱形;故選C.【點睛】本題主要考查了菱形的判定,準確分析判斷是解題的關鍵.9、B【解析】【分析】先證明四邊形BCED為平行四邊形,再根據(jù)矩形的判定進行解答.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE為矩形,故本選項不符合題意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四邊形DBCE不能為矩形,故本選項符合題意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE為矩形,故本選項不符合題意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE為矩形,故本選項不符合題意.故選:B.【點睛】本題考查了平行四邊形的判定和性質(zhì)、矩形的判定等知識,判定四邊形BCED為平行四邊形是解題的關鍵.10、B【解析】【分析】根據(jù)三角形中位線定理得到PD=BF=6,PD∥BC,根據(jù)平行線的性質(zhì)得到∠PDA=∠CBA,同理得到∠PDQ=90°,根據(jù)勾股定理計算,得到答案.【詳解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵點P,D分別是AF,AB的中點,∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故選:B.【點睛】本題考查的是三角形中位線定理、勾股定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關鍵.二、填空題1、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質(zhì)求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質(zhì)得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊上的中線,勾股定理等知識,解題的關鍵是熟練掌握正方形的性質(zhì).2、×√【解析】【分析】根據(jù)菱形的性質(zhì),即可求解.【詳解】解:(1)菱形的對角線互相垂直且平分;(2)菱形的對角線把菱形分成四個全等的直角三角形.故答案為:(1)×;(2)√【點睛】本題主要考查了菱形的性質(zhì),熟練掌握菱形的對角線互相垂直且平分是解題的關鍵.3、5cm或5.2cm【解析】【分析】當點P在BC上,AM>BP,當點P在AB上,AM>BP,當點P在CD上,如圖,根據(jù)PB=AM,可證Rt△ABM≌Rt△BCP(HL),可證BP⊥AM,根據(jù)勾股定理可求AM=,根據(jù)三角形面積可求,可求PN=BP-BN;當點P在AD上,如圖,可證Rt△ABM≌Rt△BAP(HL),再證AN=PN=BN=MN,根據(jù)AM=BP=10cm,可求PN=cm,【詳解】解:當點P在BC上,AM>BP,當點P在AB上,AM>BP,不合題意,舍去;當點P在CD上,如圖,∵PB=AM∵四邊形ABCD為正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵MC=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,當點P在AD上,如圖,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的長為5cm或5.2cm.故答案為5cm或5.2cm.【點睛】本題考查正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類討論思想,掌握正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類討論思想是解題關鍵.4、10或14##14或10【解析】【分析】利用BF平分∠ABC,CE平分∠BCD,以及平行關系,分別求出、,通過和是否相交,分兩類情況討論,最后通過邊之間的關系,求出的長即可.【詳解】解:四邊形ABCD是平行四邊形,,,,,,BF平分∠ABC,CE平分∠BCD,,,,,由等角對等邊可知:,,情況1:當與相交時,如下圖所示:,,,情況2:當與不相交時,如下圖所示:,,故答案為:10或14.【點睛】本題主要是考查了平行四邊形的性質(zhì),熟練運用平行關系+角平分線證邊相等,是解決本題的關鍵,還要注意根據(jù)和是否相交,本題分兩類情況,如果沒考慮仔細,會漏掉一種情況.5、4【解析】【分析】以AC為邊作正△AFC,并作FH⊥AC,垂足為點H,連接FD、CE,由直角三角形可求BC=4,,由“SAS”可證△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此時,故CE的最小值是.【詳解】解:以AC為邊作正△AFC,并作FH⊥AC,垂足為點H,連接FD、CE,如圖:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等邊三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴當FD⊥BD時,F(xiàn)D最小,此時∠FDC=∠DCH=∠CHF=90°,∴四邊形FDCH是矩形,∴,∴CE的最小值是.故答案為:4,.【點睛】本題主要考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)與判定,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關鍵在于能夠熟練掌握等邊三角形的性質(zhì).6、【解析】【分析】根據(jù)中位線定理可得的長度,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出的長度.【詳解】解:∵點、、分別是三邊的中點,且∴∵∴故答案為:【點睛】本題主要考查了三角形的中位線定理和直角三角形斜邊上的中線,熟練掌握三角形的中位線定理和直角三角形斜邊上的中線是解答本題的關鍵.7、【解析】【分析】先根據(jù)矩形的性質(zhì)證明△ABC是等邊三角形,得到,則,然后根據(jù)勾股定理求出,最后根據(jù)矩形面積公式求解即可.【詳解】:如圖所示,在矩形ABCD中,∠AOB=60°,,∵四邊形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等邊三角形,∴,∴,∴,∴,故答案為:.【點睛】本題主要考查了矩形的性質(zhì),勾股定理,等邊三角形的性質(zhì)與判定,解題的關鍵在于能夠熟練掌握矩形的性質(zhì).8、2【解析】【分析】取的中點為,連接,根據(jù)直角三角形的性質(zhì)求出OG和MG的長,然后根據(jù)兩點之間線段最短即可求解.【詳解】解:取的中點為,連接,為正方形,,,為中點,,又為直角三角形,,的軌跡是以為圓心的圓弧,最小值為當三點共線時,即,故答案為:2.【點睛】本題考查了正方形的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,以及兩點之間線段最短等知識,正確作出輔助線是解答本題的關鍵.9、【解析】【分析】過點E作EF⊥AD于點F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過點E作EF⊥AD于點F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構造直角三角形,是解題的關鍵.10、【解析】【分析】設BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關于x的方程,求解x即可.【詳解】解:設BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準確運用題目中的條件表示出EF列出方程式解題的關鍵.三、解答題1、(1)AB=AF+AE;(2)AE+AF=AB,理由見解析;(3)或【分析】(1)證明△BDF≌OADE,可得BF=AE,從而證明AB=AF+AE;(2)取AB中點G,連接DG,利用ASA證明△GDF≌△ADE,得到GF=AE,可得AG=AB=AF+FG=AE+AF;(3)分兩種情況:當點E在線段AC上時或當點E在AC延長線上時,取AC的中點H,連接DH,同理證明△ADF≌△HDE,得到AF=HE,從而求解.【詳解】(1)如圖1,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵D為BC中點,∴AD⊥BC,∠BAD=∠CAD=45°,AD=BD=CD,∴∠ADB=∠ADF+∠BDF=90°,∵∠EDF=∠ADE+∠ADF=90°,∴∠BDF=∠ADE,∵BD=AD,∠B=∠CAD=45°,∴△BDF≌△ADE(ASA),∴BF=AE,∴AB=AF+BF=AF+AE;故答案為:AB=AF+AE;(2)AE+AF=AB.理由是:如圖2,取AB中點G,連接DG,∵點G是斜邊中點,∴DG=AG=BG=AB,∵AB=AC,∠BAC=120°,點D為BC的中點,∴∠BAD=∠CAD=60°,∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,又∵∠FAD+∠ADE=∠FDE=60°,∴∠GDF=∠ADE,∵DG=AG,∠BAD=60°,∴△ADG為等邊三角形,∴∠AGD=∠CAD=60°,GD=AD,∴△GDF≌△ADE(ASA),∴GF=AE,∴AG=AB=AF+FG=AE+AF,∴AE+AF=AB;(3)當點E在線段AC上時,如圖3,取AC的中點H,連接DH,當AB=AC=5,CE=1,∠EDF=60°時,AE=4,此時F在BA的延長線上,同(2)可得:△ADF≌△HDE(ASA),∴AF=HE,∵AH=CH=AC=,CE=1,∴,當點E在AC延長線上時,如圖4,同理可得:;綜上:AF的長為或.【點睛】本題考查三角形綜合問題,掌握全等三角形的判定與性質(zhì)是解題的關鍵2、(1)見解析;(2)16【分析】(1)根據(jù)平行四邊形的性質(zhì),可得OA=OC,OB=OD,從而得到OE=OG,OF=OH,即可求證;(2)根據(jù)三角形中位線定理,可得,從而得到,再由(1)四邊形EFGH是平行四邊形,即可求解.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵點E、F、G、H分別是OA、OB、OC、OD的中點,∴,∴OE=OG,OF=OH,∴四邊形EFGH是平行四邊形;(2)∵點E、F、G、H分別是OA、OB、OC、OD的中點,∴,∴,∵的周長為2(AB+BC)=32,∴,∴,由(1)知:四邊形EFGH是平行四邊形,∴四邊形EFGH的周長為.【點睛】本題主要考查了平行四邊形的判定和性質(zhì),三角形的中位線定理,熟練掌握平行四邊形的判定和性質(zhì)定理,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026汽車維修工招聘面試題及答案
- 2025-2026 學年高三 生物 模擬考試 試卷及答案
- 2025-2026 學年七年級 生物 隨堂檢測 試卷及答案
- 2025 年大學公共藝術(公共藝術設計技術)試題及答案
- 2025 年大學工學(材料科學與工程(金屬材料工程))試題及答案
- 小學教育專業(yè)學生職業(yè)認同現(xiàn)狀調(diào)查分析-基于廣州三所本科高校的調(diào)研數(shù)據(jù)
- 2025濟寧網(wǎng)格員招聘(30人)筆試考試參考試題及答案解析
- 2025海南儋州市教育局赴高校(考核)招聘中學教師40人(一)考試筆試模擬試題及答案解析
- 2025四川自貢匯東人力資源發(fā)展有限責任公司招聘人員4人考試筆試參考題庫附答案解析
- 2025河北邢臺市人民醫(yī)院招聘編外工作人員41人筆試考試參考題庫及答案解析
- GB/T 70.1-2008內(nèi)六角圓柱頭螺釘
- GB/T 5271.18-2008信息技術詞匯第18部分:分布式數(shù)據(jù)處理
- GB/T 20469-2006臨床實驗室設計總則
- GB/T 18268.1-2010測量、控制和實驗室用的電設備電磁兼容性要求第1部分:通用要求
- GB/T 148-1997印刷、書寫和繪圖紙幅面尺寸
- 各工序的協(xié)調(diào)措施施工方案
- GB∕T 1348-2019 球墨鑄鐵件-行業(yè)標準
- 硫化黑生產(chǎn)工藝
- 火力發(fā)電企業(yè)作業(yè)活動風險分級管控清單(參考)
- 作物栽培學各論-玉米栽培
- 超濾膜技術介紹及應用課件(PPT 36頁)
評論
0/150
提交評論