強化訓練-人教版8年級數(shù)學上冊《全等三角形》綜合練習試題(詳解)_第1頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》綜合練習試題(詳解)_第2頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》綜合練習試題(詳解)_第3頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》綜合練習試題(詳解)_第4頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》綜合練習試題(詳解)_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在中,,的平分線交于點E,于點D,若的周長為12,,則的周長為(

)A.9 B.8 C.7 D.62、已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA3、如圖,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,,,則,滿足關系(

)A. B. C. D.4、下列說法正確的是(

)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點所表示的數(shù)為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應假設“這個三角形中有兩個鈍角”;⑤如圖,在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點.A.1 B.2 C.3 D.45、如圖,在和中,,連接交于點,連接.下列結論:①;②;③平分;④平分.其中正確的個數(shù)為().A.4 B.3 C.2 D.1第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖所示,在中,D是的中點,點A、F、D、E在同一直線上.請?zhí)砑右粋€條件,使(不再添其他線段,不再標注或使用其他字母),并給出證明.你添加的條件是______2、如圖,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分線交于點E,則∠ABE=_____°.3、如圖,PM⊥OA,PN⊥OB,∠BOC=30°,PM=PN,則∠AOB=_________.4、如圖,已知△ABC與△DEF全等,且∠A=72°、∠B=45°、∠E=63°、BC=10,EF=10,那么∠D=_____度.5、如圖,在四邊形中,,,,的延長線與、相鄰的兩個角的平分線交于點E,若,則的度數(shù)為___________.三、解答題(5小題,每小題10分,共計50分)1、如圖,點B、C、D在同一直線上,△ABC、△ADE是等邊三角形,CE=5,CD=2(1)證明:△ABD≌△ACE;(2)求∠ECD的度數(shù);(3)求AC的長.2、(2019秋?九龍坡區(qū)校級月考)如圖.在四邊形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分別是邊BC、CD延長線上的點,且∠EAF∠BAD,求證:EF=BE﹣FD.3、如圖,在△ABC中,∠ACB=90°,用直尺和圓規(guī)在斜邊AB上作一點P,使得點P到點B的距離與點P到邊AC的距離相等.(保留作圖痕跡,不寫作法)4、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.5、小明的學習過程中,對教材中的一個有趣問題做如下探究:(1)【習題回顧】已知:如圖1,在中,,是角平分線,是高,相交于點.求證:;(2)【變式思考】如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點,其反向延長線與邊的延長線交于點,若,求和的度數(shù);(3)【探究延伸】如圖3,在中,在上存在一點,使得,角平分線交于點.的外角的平分線所在直線與的延長線交于點.若,求的度數(shù).-參考答案-一、單選題1、D【解析】【分析】通過證明得到、,的周長,即可求解.【詳解】解:∵平分∴,又∵∴又∵∴(AAS)∴、,的周長為,故選:D,【考點】此題考查了全等三角形的判定與性質,解題的關鍵是掌握全等三角形的判定方法與性質,以及線段之間的等量關系.2、B【解析】【分析】利用全等三角形判定定理ASA,SAS,AAS對各個選項逐一分析即可得出答案.【詳解】解:A、∵∠1=∠2,AD為公共邊,若AB=AC,則△ABD≌△ACD(SAS);故A不符合題意;B、∵∠1=∠2,AD為公共邊,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合題意;C、∵∠1=∠2,AD為公共邊,若∠B=∠C,則△ABD≌△ACD(AAS);故C不符合題意;D、∵∠1=∠2,AD為公共邊,若∠BDA=∠CDA,則△ABD≌△ACD(ASA);故D不符合題意.故選B.3、C【解析】【分析】根據(jù)△△,證得,=,再利用∥BC得到=,再根據(jù)三角形內(nèi)角和定理即可得到結論.【詳解】∵△△,∴,∠ACB=,∴,=,∵∥BC,∴=,∴,故選:C.【考點】此題考查旋轉圖形的性質,等腰三角形的性質,兩直線平行內(nèi)錯角相等,三角形的內(nèi)角和定理.4、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實數(shù)的大小比較,可判斷②;根據(jù)點在數(shù)軸上所對應的實數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質,可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點所表示的數(shù)為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應假設“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點,故本小題正確.故選B【考點】本題主要考查近似數(shù)的精確度定義,實數(shù)的大小比較,點在數(shù)軸上所對應的實數(shù),反證法的概念,角平分線的性質,熟練掌握上述知識點,是解題的關鍵.5、B【解析】【分析】根據(jù)題意逐個證明即可,①只要證明,即可證明;②利用三角形的外角性質即可證明;④作于,于,再證明即可證明平分.【詳解】解:∵,∴,即,在和中,,∴,∴,①正確;∴,由三角形的外角性質得:∴°,②正確;作于,于,如圖所示:則°,在和中,,∴,∴,∴平分,④正確;正確的個數(shù)有3個;故選B.【考點】本題是一道幾何的綜合型題目,難度系數(shù)偏上,關鍵在于利用三角形的全等證明來證明線段相等,角相等.二、填空題1、ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF)【解析】【分析】根據(jù)三角形全等的判定方法SAS或AAS或ASA定理添加條件,然后證明即可.【詳解】解:∵D是的中點,∴BD=DC①若添加ED=FD在△BDE和△CDF中,,∴△BDE≌△CDF(SAS);②若添加∠E=∠CFD在△BDE和△CDF中,,∴△BDE≌△CDF(AAS);③若添加∠DBE=∠DCF在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);故答案為:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF).【考點】本題考查了全等三角形的判定,熟練掌握三角形全等的判定方法是解題的關鍵.2、23.5或【解析】【分析】首先作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,再利用角平分線的性質得出BE為∠ABC的角平分線,即可求解.【詳解】解:作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,如圖所示,∵AE、CE是∠DAC和∠ACF的平分線,∴EM=EO,EO=EN,∴EM=EN,∴BE是∠ABC的角平分線,∴∠ABE=∠ABC=23.5°.故答案為:23.5.【考點】此題考查角平分線的性質:在角的內(nèi)部,到角的兩邊距離相等的點在角的平分線上,反之也是成立的.解題關鍵是利用角平分線的判定定理.3、60°或60度【解析】【分析】根據(jù)到角的兩邊距離相等的點在角的平分線上判斷出OC平分∠AOB,再根據(jù)角平分線的定義可得∠AOB=2∠BOC.【詳解】解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC,又∠BOC=30°,∴∠AOB=60°.故答案為:60°.【考點】本題考查了角平分線的判定,掌握角平分線的判定是解題的關鍵.4、【解析】【分析】△ABC中,根據(jù)三角形內(nèi)角和定理求得∠C=63°,那么∠C=∠E.根據(jù)相等的角是對應角,相等的邊是對應邊得出△ABC≌△DFE,然后根據(jù)全等三角形的對應角相等即可求得∠D.【詳解】解:在△ABC中,∵∠A=72°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=63°,∵∠E=63°,∴∠C=∠E.∵△ABC與△DEF全等,BC=10,EF=10,∴△ABC≌△DFE,∴∠D=∠A=72°,故答案為72.【考點】本題考查了全等三角形的性質;注意:題目條件中△ABC與△DEF全等,但是沒有明確對應頂點.得出△ABC≌△DFE是解題的關鍵.5、【解析】【分析】先證明Rt△CDA≌Rt△CBA得到,再由角平分線的定義求出∠EDC=45°,最后根據(jù)三角形內(nèi)角和定理求解即可.【詳解】解:∵,,∴∠CDA=∠CBA=90°,在Rt△CDA和Rt△CBA中,,∴Rt△CDA≌Rt△CBA(HL),∴,∵DE平分與∠ADC相鄰的角,∠ADC=90°,∴∠EDC=45°,∴∠CED=180°-∠DAE-∠ADC-∠EDC=15°,故答案為:15°.【考點】本題主要考查了全等三角形的性質與判定,三角形內(nèi)角和定理,角平分線的定義,熟知全等三角形的性質與判定條件是解題的關鍵.三、解答題1、(1)見解析(2)60°(3)3【解析】【分析】(1)根據(jù)等邊三角形的性質利用SAS證明;(2)利用全等三角形的性質得到∠B=∠ACE=60°,計算即可得到答案;(3)利用全等的性質得到BD的長,再由等邊三角形的性質,即可得到AC的長.(1)證明:∵△ABC和△ADE是等邊三角形,∴AD=AE,AB=AC,∠BAC=∠DAE=∠ACB=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE;(2)解:∵△ABD≌△ACE,∴∠B=∠ACE=60°,∴∠DCE=180°-∠ACB-∠ACE=60°;(3)解:∵△ABD≌△ACE,∴BD=CE=5,∴BC=BD-CD=5-2=3,∴AC=BC=3.【考點】此題考查了全等三角形的判定及性質,熟記全等三角形的幾種判定定理:SSS,SAS,ASA,AAS,HL,并熟練應用是解題的關鍵.2、詳見解析【解析】【分析】在BE上截取BG,使BG=DF,連接AG.根據(jù)SAS證明△ABG≌△ADF得到AG=AF,∠BAG=∠DAF,根據(jù)∠EAF∠BAD,可知∠GAE=∠EAF,可證明△AEG≌△AEF,EG=EF,那么EF=GE=BE﹣BG=BE﹣DF.【詳解】證明:在BE上截取BG,使BG=DF,連接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF∠BAD.∴∠GAE=∠EAF.在△AEG和△AEF中,,∴△AEG≌△AEF(SAS).∴EG=EF,∵EG=BE﹣BG∴EF=BE﹣FD.【考點】此題主要考查全等三角形的判定與性質,解題的關鍵是根據(jù)已知條件作出輔助線求解.3、詳見解析【解析】【分析】先作∠ABC的角平分線BD,再過點D作AC的垂線交AB于P,則利用PD∥BC得到∠PDB=∠CBD,于是可證明∠PDB=∠CBD,所以PB=PD.【詳解】解:如圖,點P為所作.【考點】此題主要考查尺規(guī)作圖,解題的關鍵是熟知角平分線的作法與平行線的性質.4、見解析【解析】【分析】先在線段BC上截取BE=BA,連接DE,根據(jù)BD平分∠ABC,可得∠ABD=∠EBD,根據(jù),可判定△ABD≌△EBD,根據(jù)全等三角形的性質可得:AD=ED,∠A=∠BED.再根據(jù)AD=CD,等量代換可得ED=CD,根據(jù)等邊對等角可得:∠DEC=∠C.由∠BED+∠DEC=180°,可得∠A+∠C=180°.【詳解】證明:在線段BC上截取BE=BA,連接DE,如圖所示,∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.【考點】本題主要考查全等三角形的判定和性質,解決本題的關鍵是要熟練掌握全等三角形的判定和性質.5、(1)見解析;(2)25°,25°;(3)55°【解析】【分析】(1)由余角的性質可得∠B=∠ACD,由角平分線的性質和外角的性質可得結論;(2)由三角形內(nèi)角和定理可求∠GAF=130°,由角平分線的性質可求∠GAF=65°,由余角的性質可求解;(3)由平角的性質和角平分線的性質可求∠EAN=90°,由外角的性質可求解.(1)證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF為∠BAG的角平分線,∴∠GAF=∠DAF130°=65°,∵CD為AB邊上的高,∴∠ADF=∠ACE=9

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論