版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版9年級數(shù)學上冊《概率初步》同步訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、在一個不透明紙箱中放有除了數(shù)字不同外,其它完全相同2張卡片,分別標有數(shù)字1、2,從中任意摸出一張,放回攪勻后再任意摸出一張,兩次摸出的數(shù)字之和為奇數(shù)的概率為(
)A. B. C. D.2、下列說法正確的是(
)A.為了解近十年全國初中生的肥胖人數(shù)變化趨勢,采用扇形統(tǒng)計圖最合適B.“煮熟的鴨子飛了”是一個隨機事件C.一組數(shù)據(jù)的中位數(shù)可能有兩個D.為了解我省中學生的睡眠情況,應采用抽樣調(diào)查的方式3、老師組織學生做分組摸球實驗.給每組準備了完全相同的實驗材料,一個不透明的袋子,袋子中裝有除顏色外都相同的3個黃球和若干個白球.先把袋子中的球攪勻后,從中隨意摸出一個球,記下球的顏色再放回,即為一次摸球.統(tǒng)計各組實驗的結果如下:一組二組三組四組五組六組七組八組九組十組摸球的次數(shù)100100100100100100100100100100摸到白球的次數(shù)41394043383946414238請你估計袋子中白球的個數(shù)是(
)A.1個 B.2個 C.3個 D.4個4、一個布袋中放著6個黑球和18個紅球,除了顏色以外沒有任何其他區(qū)別.則從布袋中任取1個球,取出黑球的概率是(
)A. B. C. D.5、下列說法正確的是()A.367人中至少有2人生日相同B.任意擲一枚均勻的骰子,擲出的點數(shù)是偶數(shù)的概率是C.天氣預報說明天的降水概率為90%,則明天一定會下雨D.某種彩票中獎的概率是1%,則買100張彩票一定有1張中獎6、兩名同學在一次用頻率估計概率的試驗中統(tǒng)計了某一結果出現(xiàn)的頻率,繪制出統(tǒng)計圖如圖所示,則符合這一結果的試驗可能是(
)A.拋一枚硬幣,正面朝上的概率B.擲一枚正六面體的骰子,出現(xiàn)點的概率C.轉動如圖所示的轉盤,轉到數(shù)字為奇數(shù)的概率D.從裝有個紅球和個藍球的口袋中任取一個球恰好是藍球的概率7、在一個不透明的口袋中裝有個白球、個黃球、個紅球、個綠球,除顏色其余都相同,小明通過多次摸球實驗后發(fā)現(xiàn),摸到某種顏色的球的頻率穩(wěn)定在左右,則小明做實驗時所摸到的球的顏色是()A.白色 B.黃色 C.紅色 D.綠色8、現(xiàn)有4張卡片,正面圖案如圖所示,它們除此之外完全相同.把這4張卡片背面朝上洗勻,從中隨機抽取兩張,則這兩張卡片正面圖案恰好是“天問”和“九章”的概率是()A. B. C. D.9、在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.10、一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球,每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后再放回盒子,通過大量重復摸球實驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在30%,那么估計盒子中小球的個數(shù)n為(
)A.20 B.24 C.28 D.30第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、一個小球在如圖所示的方格地磚上任意滾動,并隨機停留在某塊地磚上.每塊地磚的大小、質(zhì)地完全相同,那么該小球停留在黑色區(qū)域的概率是___________.2、將一枚質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)擲一次,朝上一面點數(shù)是1的概率為________.3、在,,,,,中任取一個數(shù),取到無理數(shù)的概率是______.4、一個不透明的口袋中有兩個完全相同的小球,把它們分別標號為1,2.隨機摸取一個小球后,放回并搖勻,再隨機摸取一個小球,兩次取出的小球標號的和等于4的概率為__________.5、大小、形狀完全相同的5張卡片,背面分別寫著“我”“的”“中”“國”“夢”這5個字,從中隨機抽取一張,則這張卡片背面恰好寫著“中”字的概率是______.6、在一個布袋中裝有只有顏色不同的a個小球,其中紅球的個數(shù)為2,隨機摸出一個球記下顏色后再放回袋中,通過大量重復實驗和發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定于0.2,那么可以推算出a大約是____________.7、如圖,在3×3的正方形網(wǎng)格中,已有兩個小正方形被涂黑,在從圖中剩余的7個小正方形中任選一個涂黑,則圖案是軸對稱圖形的概率是_____.8、一個不透明的口袋中有三個完全相同的小球,其中2個小球印有冰墩墩圖案,1個小球印有雪容融圖案,隨機摸取一個小球然后放回,再隨機摸出一個小球,兩次取出的小球恰好一個是冰墩墩,一個是雪容融的概率為_____.9、一個不透明的袋中裝有除顏色外均相同的9個紅球,3個白球,若干個綠球,每次搖勻后隨機摸出一個球,記下顏色后再放回袋中,經(jīng)過大量重復實驗后,發(fā)現(xiàn)摸到綠球的概率穩(wěn)定在0.2,則袋中有綠球______個.10、某同學投擲一枚硬幣,如果連續(xù)次都是正面朝上,則他第次拋擲硬幣的結果是正面朝上的概率是________.三、解答題(5小題,每小題6分,共計30分)1、如圖,有四張背面完全相同的紙牌A,B,C,D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A,B,C,D表示).2、“共和國勛章”獲得者鐘南山院士說:按照疫苗保護率達到70%計算,中國的新冠疫苗覆蓋率需要達到近80%,才有可能形成群體免疫,本著自愿的原則,18至60周歲符合身體條件的中國公民均可免費接種新冠疫苗.居民甲、乙準備接種疫苗,其居住地及工作單位附近有兩個大型醫(yī)院和兩個社區(qū)衛(wèi)生服務中心均可免費接種疫苗,提供疫苗種類如下表:接種地點疫苗種類醫(yī)院A新冠病毒滅活疫苗B重組新冠病毒疫苗(CHO細胞)社區(qū)衛(wèi)生服務中心C新冠病毒滅活疫苗D重組新冠病毒疫苗(CHO細胞)若居民甲、乙均在A、B、C、D中隨機獨立選取一個接種點接種疫苗,且選擇每個接種點的機會均等(提示:用A、B、C、D表示選取結果)(1)求居民甲接種的是新冠病毒滅活疫苗的概率;(2)請用列表或畫樹狀圖的方法求居民甲、乙接種的是相同種類疫苗的概率.3、湯姆斯杯世界男子羽毛球團體賽小組賽比賽規(guī)則:兩隊之間進行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機會相同.(1)若前四局雙方戰(zhàn)成2:2,那么甲隊最終獲勝的概率是__________;(2)現(xiàn)甲隊在前兩局比賽中已取得2:0的領先,那么甲隊最終獲勝的概率是多少?4、在“雙減”和“雙增”的政策下,某校七年級開設了五門手工課,按照類別分別為:.剪紙;.沙畫;.雕刻;.泥塑;.插花,每個學生僅限選擇一項,為了了解學生對每種手工課的喜愛程度,隨機抽取了七年級部分學生進行調(diào)查,并將調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖:根據(jù)統(tǒng)計圖提供的信息,解答下列問題:(1)本次共調(diào)查了__________名學生;扇形統(tǒng)計圖中__________,類別所對應的扇形圓心角的度數(shù)是__________度;(2)請根據(jù)以上信息直接補全條形統(tǒng)計圖;(3)在學期結束時,從開設的五門手工課中各選出一名學生談感悟,由于這五名同學采用隨機抽簽的方式確定順序,請用樹狀圖或列表的方式說明剪紙()和雕刻()兩人排在前兩位談感受的概率.5、為傳播數(shù)學文化,激發(fā)學生學習興趣,學校開展數(shù)學學科月活動,七年級開展了四個項目:A.閱讀數(shù)學名著;B.講述數(shù)學故事;C.制作數(shù)學模型;D.挑戰(zhàn)數(shù)學游戲要求七年級學生每人只能參加一項.為了解學生參加各項目情況,隨機調(diào)查了部分學生,將調(diào)查結果制作成統(tǒng)計表和扇形統(tǒng)計圖(如圖),請根據(jù)圖表信息解答下列問題:項目ABCD人數(shù)/人515ab(1)_______________,_______________.(2)扇形統(tǒng)計圖中“B”項目所對應的扇形圓心角為_______________度.(3)在月末的展示活動中,“C”項目中七(1)班有3人獲得一等獎,七(2)班有2人獲得一等獎,現(xiàn)從這5名學生中隨機抽取2人代表七年級參加學校制作數(shù)學模型比賽,請用列表或畫樹狀圖法求抽中的2名學生來自不同班級的概率.-參考答案-一、單選題1、C【解析】【分析】利用列表法或樹狀圖法找出所有出現(xiàn)的可能結果,再找出兩次摸出的數(shù)字之和為奇數(shù)出現(xiàn)的可能結果即可求解.【詳解】1211+1=21+2=322+1=32+2=4從表中可知,共有4種等可能的結果,其中兩次摸出的數(shù)字之和為奇數(shù)的有2種,所以兩次摸出的數(shù)字之和為奇數(shù)的的概率是,故選:C【考點】本題考查了利用列表法或樹狀圖法求概率,正確地列出表格或樹狀圖是解題的關鍵.注意:從中任意摸出一張,放回攪勻后再任意摸出一張.2、D【解析】【分析】根據(jù)統(tǒng)計圖的選擇,隨機事件的定義,中位數(shù)的定義,抽樣調(diào)查與普查逐項分析判斷即可求解.【詳解】解:A.為了解近十年全國初中生的肥胖人數(shù)變化趨勢,采用折線統(tǒng)計圖最合適,故該選項不正確,不符合題意;B.“煮熟的鴨子飛了”是一個不可能事件,故該選項不正確,不符合題意;C.一組數(shù)據(jù)的中位數(shù)只有1個,故該選項不正確,不符合題意;D.為了解我省中學生的睡眠情況,應采用抽樣調(diào)查的方式,故該選項正確,符合題意;故選:D.【考點】本題考查了統(tǒng)計圖的選擇,隨機事件的定義,中位數(shù)的定義,抽樣調(diào)查與普查,掌握相關定義以及統(tǒng)計圖知識是解題的關鍵.必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).由普查得到的調(diào)查結果比較準確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結果比較近似,折線統(tǒng)計圖不僅容易看出數(shù)量的多少,而且能反映數(shù)量的增減變化情況;扇形統(tǒng)計圖能反映部分與整體的關系.3、B【解析】【分析】由表格可知共摸球1000次,其中摸到白球的頻率穩(wěn)定在0.4,由此知袋子中摸出一個球,是白球的概率為0.4,據(jù)此根據(jù)概率公式可得答案.【詳解】解:由表格可知共摸球1000次,其中摸到白球的頻率穩(wěn)定在0.4,∴在袋子中摸出一個球,是白球的概率為0.4,設白球有x個,則=0.4,解得:x=2,故選:B.【考點】本題主要考查利用頻率估計概率及概率公式,熟練掌握頻率估計概率的前提是在大量重復實驗的前提下是解題的關鍵.4、A【解析】【分析】由于每個球被取出的機會是均等的,故用概率公式計算即可.【詳解】解:根據(jù)題意,一個布袋中放著6個黑球和18個紅球,根據(jù)概率計算公式,從布袋中任取1個球,取出黑球的概率是.故選:A.【考點】本題主要考查了概率公式的知識,解題關鍵是熟記概率公式.5、A【解析】【詳解】分析:利用概率的意義和必然事件的概念的概念進行分析.詳解:A、367人中至少有2人生日相同,正確;B、任意擲一枚均勻的骰子,擲出的點數(shù)是偶數(shù)的概率是,錯誤;C、天氣預報說明天的降水概率為90%,則明天不一定會下雨,錯誤;D、某種彩票中獎的概率是1%,則買100張彩票不一定有1張中獎,錯誤;故選A.點睛:此題主要考查了概率的意義,解決的關鍵是理解概率的意義以及必然事件的概念.6、D【解析】【分析】根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:A、擲一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項不符合題意;B、擲一枚正六面體的骰子,出現(xiàn)點的概率為,故此選項不符合題意;C、轉動如圖所示的轉盤,轉到數(shù)字為奇數(shù)的概率為,故此選項不符合題意;D、從裝有個紅球和個藍球的口袋中任取一個球恰好是藍球的概率為,故此選項符合題意.故選:D.【考點】此題考查了利用頻率估計概率,屬于常見題型,明確大量反復試驗下頻率穩(wěn)定值即概率是解答的關鍵.7、C【解析】【詳解】試題解析:因為白球的概率為:;因為黃球的概率為:=0.2;因為紅球的概率為:=0.3;因為綠球的概率為:=0.35.故選C.8、A【解析】【分析】畫樹狀圖,共有12種等可能的結果,所抽取的卡片正面上的圖形恰好是“天問”和“九章”的結果有2種,再由概率公式求解即可.【詳解】解:把印有“北斗”、“天問”、“高鐵”和“九章”的四張卡片分別記為:A、B、C、D,畫樹狀圖如圖:共有12種等可能的結果,所抽中的恰好是B和D的結果有2種,∴所抽取的卡片正面上的圖形恰好是“天問”和“九章”的概率為.故選:A.【考點】本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.9、A【解析】【分析】首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結果,其中兩次都摸到黃球的有4種結果,∴兩次都摸到黃球的概率為,故選A.【考點】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.10、D【解析】【分析】直接由概率公式求解即可.【詳解】根據(jù)題意得=30%,解得:n=30,所以這個不透明的盒子里大約有30個除顏色外其他完全相同的小球.故選:D.【考點】本題考查由頻率估計概率、簡單的概率計算,熟知求概率公式是解答的關鍵.二、填空題1、【解析】【分析】先求出黑色方磚在整個地面中所占的比值,再根據(jù)其比值即可得出結論.【詳解】解:∵由圖可知,黑色方磚6塊,共有16塊方磚,∴黑色方磚在整個區(qū)域中所占的比值=,∴小球停在黑色區(qū)域的概率是;故答案為:【考點】本題考查的是幾何概率,用到的知識點為:幾何概率=相應的面積與總面積之比.2、【解析】【分析】使用簡單事件概率求解公式即可:事件發(fā)生總數(shù)比總事件總數(shù).【詳解】擲骰子一次共可能出現(xiàn)6種情況,分別是向上點數(shù)是:1、2、3、4、5、6,點數(shù)1向上只有一種情況,則朝上一面點數(shù)是1的概率P=.故答案為:【考點】本題考查了簡單事件概率求解,熟練掌握簡單事件概率求解的公式是解題的關鍵.3、【解析】【分析】根據(jù)無理數(shù)就是無限不循環(huán)小數(shù)判斷出無理數(shù)的個數(shù),然后根據(jù)概率公式求解即可.【詳解】解:∵在,,,,,中,是無理數(shù)有,這個數(shù),∴任取一個數(shù),取到無理數(shù)的概率是,故答案為:.【考點】本題考查了無理數(shù),概率.解題的關鍵在于確定無理數(shù)的個數(shù).4、【解析】【分析】根據(jù)題意可畫出樹狀圖,然后問題可求解.【詳解】解:由題意可得樹狀圖:∴兩次取出的小球標號的和等于4的概率為;故答案為.【考點】本題主要考查概率,熟練掌握利用樹狀圖求解概率是解題的關鍵.5、【解析】【分析】屬于求簡單事件的概率,所有的等可能結果,從中確定符合事件的結果,利用概率公式計算即可.【詳解】解:背面分別寫著“我”“的”“中”“國”“夢”這5個字,從中隨機抽取一張,共有5種情況,“中”只有一種情況,隨機抽取一張,背面恰好寫著“中”字的概率是.故答案為:.【考點】本題考查的是求簡單事件的概率,掌握求簡單事件的概率方法,從中隨機抽取一張確定出出現(xiàn)總的可能情況,找出符合條件的情況是解答此類問題的關鍵.6、10【解析】【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,列出方程求解.【詳解】解:由題意可得,=0.2,解得,a=10.故估計a大約有10個.故答案為:10.【考點】此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據(jù)紅球的頻率得到相應的等量關系.7、【解析】【分析】將空白部分小正方形分別涂黑,任意一個涂黑共7種情況,其中涂黑1,3,5,6,7有5種情況可使所得圖案是一個軸對稱圖形,利用概率公式求解即可.【詳解】解:如圖,將圖中剩余的編號為1至7的小正方形中任意一個涂黑共7種情況,其中涂黑1,3,5,6,7有5種情況可使所得圖案是一個軸對稱圖形,所以所得圖案是軸對稱圖形的概率是.故答案為:.【考點】本題考查了概率公式求簡單概率,設計軸對稱圖形,理解題意是解題的關鍵.8、【解析】【分析】畫樹狀圖,共有9種等可能的結果,摸出的兩個小球一個是冰墩墩,一個是雪容融的結果有4種,再由概率公式求解即可.【詳解】解:把兩張正面印有冰墩墩圖案的卡片記為A、B,一張正面印有雪容融圖案的卡片記為C,畫樹狀圖如下:共有9種等可能的結果,摸出的兩個小球一個是冰墩墩,一個是雪容融的結果有4種,∴兩次取出的小球恰好一個是冰墩墩,一個是雪容融的概率為,故答案為:.【考點】此題考查了樹狀圖法求概率.樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合兩步或兩步以上完成的事件;解題時要注意此題是放回試驗還是不放回試驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、3.【解析】【詳解】解:設綠球的個數(shù)為x,根據(jù)題意,得:=0.2,解得:x=3,經(jīng)檢驗x=3是原分式方程的解,即袋中有綠球3個,故答案為3.10、【解析】【分析】投擲一枚硬幣,可能出現(xiàn)的兩種情況:正面朝上或者正面朝下.每次出現(xiàn)的機會相同.【詳解】第5次擲硬幣,出現(xiàn)正面朝上的機會和朝下的機會相同,都為.故答案為:.【考點】本題考查了概率公式,掌握概率等于所求情況數(shù)與總情況數(shù)之比是解題的關鍵.三、解答題1、(1).(2)公平【解析】【分析】(1)首先根據(jù)題意結合概率公式可得答案;(2)首先根據(jù)(1)求得摸出兩張牌面圖形都是軸對稱圖形的有16種情況,若摸出兩張牌面圖形都是中心對稱圖形的有12種情況,繼而求得小明贏與小亮贏的概率,比較概率的大小,即可知這個游戲是否公平.【詳解】解:(1)共有4張牌,正面是中心對稱圖形的情況有3種,所以摸到正面是中心對稱圖形的紙牌的概率是;(2)列表得:共產(chǎn)生12種結果,每種結果出現(xiàn)的可能性相同,其中兩張牌都是軸對稱圖形的有6種,∴P(兩張都是軸對稱圖形)=,因此這個游戲公平.ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)2、(1);(2)【解析】【分析】(1)利用概率公式直接計算即可;(2)先列表求解所有的等可能的結果數(shù),再得到符合條件的結果數(shù),從而利用概率公式進行計算即可.【詳解】解:(1)由概率的含義可得:居民甲接種的是新冠病毒滅活疫苗的概率是(2)列表如下:由表中信息可得一共有種等可能的結果數(shù),屬于同種疫苗的結果數(shù)有:,,,,,,,共種,所以居民甲、乙接種的是相同種類疫苗的概率為:【考點】本題考查的是隨機事件的概率,利用列表法或畫樹狀圖求解概率,掌握列表的方法與畫樹狀圖的方法是解題的關鍵.3、(1);(2)【解析】【詳解】分析:(1)直接利用概率公式求解;(2)畫樹狀圖展示所有8種等可能的結果數(shù),再找出甲至少勝一局的結果數(shù),然后根據(jù)概率公式求.詳解:(1)甲隊最終獲勝的概率是;(2)畫樹狀圖為:共有8種等可能的結果數(shù),其中甲至少勝一局的結果數(shù)為7,所以甲隊最終獲勝的概率=.點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.4、(1)120,25,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 員工盜竊培訓課件
- 眼科護理新技術與進展
- 護理人員溝通能力評估
- 專科護理在兒科護理中的應用
- 員工處罰條例課件
- 員工不負責任的表現(xiàn)課件
- 吸塵器原理課件
- 聽小骨的構造和功能
- 效果評估分析
- PDCA循環(huán)優(yōu)化管道護理資源配置
- 2025及未來5年印染布料項目投資價值分析報告
- (2025年)醫(yī)學裝備管理試題(帶答案)
- 車間后備人才現(xiàn)狀匯報
- 2025四川產(chǎn)業(yè)振興基金投資集團有限公司應屆畢業(yè)生招聘9人筆試歷年難易錯考點試卷帶答案解析2套試卷
- 《建筑設計》課程教案(2025-2026學年)
- 軟裝工程質(zhì)量管理方案有哪些
- 路面攤鋪安全培訓內(nèi)容課件
- 水箱安裝施工質(zhì)量管理方案
- 2025年國企人力資源管理崗招聘考試專業(yè)卷(含崗位說明書)解析與答案
- 光伏電廠防火安全培訓課件
- 小學數(shù)學單位換算表(高清可打?。?/a>
評論
0/150
提交評論