解析卷人教版8年級數學下冊《平行四邊形》定向測試練習題(含答案解析)_第1頁
解析卷人教版8年級數學下冊《平行四邊形》定向測試練習題(含答案解析)_第2頁
解析卷人教版8年級數學下冊《平行四邊形》定向測試練習題(含答案解析)_第3頁
解析卷人教版8年級數學下冊《平行四邊形》定向測試練習題(含答案解析)_第4頁
解析卷人教版8年級數學下冊《平行四邊形》定向測試練習題(含答案解析)_第5頁
已閱讀5頁,還剩29頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學下冊《平行四邊形》定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、下列說法中,不正確的是()A.四個角都相等的四邊形是矩形B.對角線互相平分且平分每一組對角的四邊形是菱形C.正方形的對角線所在的直線是它的對稱軸D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形2、如圖,在平面直角坐標系中,點A是x軸正半軸上的一個動點,點C是y軸正半軸上的點,于點C.已知,.點B到原點的最大距離為()A.22 B.18 C.14 D.103、在菱形ABCD中,兩條對角線AC=10,BD=24,則此菱形的邊長為()A.14 B.25 C.26 D.134、如圖,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分別是AB,AC的中點,連接DE,BE,點M在CB的延長線上,連接DM,若∠MDB=∠A,則四邊形DMBE的周長為()A.16 B.24 C.32 D.405、如圖,陰影部分是將一個菱形剪去一個平行四邊形后剩下的,要想知道陰影部分的周長,需要測量一些線段的長,這些線段可以是()A.AF B.AB C.AB與BC D.BC與CD6、已知中,,,CD是斜邊AB上的中線,則的度數是()A. B. C. D.7、在中,AC與BD相交于點O,要使四邊形ABCD是菱形,還需添加一個條件,這個條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC8、如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,FC交AD于點E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.59、如圖,在中,,點,分別是,上的點,,,點,,分別是,,的中點,則的長為().A.4 B.10 C.6 D.810、如圖,把矩形紙片沿對角線折疊,若重疊部分為,那么下列說法錯誤的是()A.是等腰三角形 B.和全等C.折疊后得到的圖形是軸對稱圖形 D.折疊后和相等第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在中,,,,為上的兩個動點,且,則的最小值是________.2、如圖,在平行四邊形ABCD中,AB=4,BC=5,以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是_____.3、若一個菱形的兩條對角線的長為3和4,則菱形的面積為___________.4、如圖,在四邊形ABCD中,AD//BC,∠B=90°,DE⊥BC于點E,AB=8cm,AD=24cm,BC=26cm,點P從點A出發(fā),沿邊AD以1cm/s的速度向點D運動,與此同時,點Q從點C出發(fā),沿邊CB以3cm/s的速度向點B運動.當其中一個動點到達端點時,另一個動點也隨之停止運動.連接PQ,過點P作PF⊥BC于點F,則當運動到第__________s時,△DEC≌△PFQ.5、如圖,圓柱形容器高為0.8m,底面周長為4.8m,在容器內壁離底部0.1m的點處有一只蚊子,此時一只壁虎正好在容器的頂部點處,若容器壁厚忽略不計,則壁虎捕捉蚊子的最短路程是______m.6、點D、E分別是△ABC邊AB、AC的中點,已知BC=12,則DE=_____7、如圖,在矩形ABCD中,對角線AC,BD相交于點O,AB=6,∠DAC=60°,點F在線段AO上從點A至點O運動,連接DF,以DF為邊作等邊三角形DFE,點E和點A分別位于DF兩側,下列結論:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④點E運動的路程是2,其中正確結論的序號為_____.8、如圖,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,點D在CB所在直線上運動,以AD為邊作等邊三角形ADE,則CB=___.在點D運動過程中,CE的最小值為___.9、如圖,△ABC中,D、E分別是AB、AC的中點,若DE=4cm,則BC=_____cm.10、如圖,在正方形紙片ABCD中,E是CD的中點,將正方形紙片折疊,點B落在線段AE上的點G處,折痕為AF.若,則CF的長為_____.三、解答題(5小題,每小題6分,共計30分)1、如圖,在中,,D是邊上的一點,過D作交于點E,,連接交于點F.(1)求證:是的垂直平分線;(2)若點D為的中點,且,求的長.2、如圖,在中,對角線AC、BD交于點O,AB=10,AD=8,AC⊥BC,求(1)的面積;(2)△AOD的周長.

3、如圖,在等腰三角形ABC中,AB=BC,將等腰三角形ABC繞頂點B按逆時針方向旋轉角a到的位置,AB與相交于點D,AC與分別交于點E,F.(1)求證:BCF;(2)當C=a時,判定四邊形的形狀并說明理由.4、如圖,在菱形ABCD中,點E,F分別是邊AB和BC上的點,且BE=BF.求證:∠DEF=∠DFE.

5、如圖,已知矩形中,點,分別是,上的點,,且.(1)求證:;(2)若,求:的值.-參考答案-一、單選題1、D【解析】【分析】根據矩形的判定,正方形的性質,菱形和平行四邊形的判定對各選項分析判斷后利用排除法求解.【詳解】解:A、四個角都相等的四邊形是矩形,說法正確;B、正方形的對角線所在的直線是它的對稱軸,說法正確;C、對角線互相平分且平分每一組對角的四邊形是菱形,說法正確;D、一組對邊相等且平行的四邊形是平行四邊形,原說法錯誤;故選:D.【點睛】本題主要考查特殊平行四邊形的判定與性質,熟練掌握特殊平行四邊形相關的判定與性質是解答本題的關鍵.2、B【解析】【分析】首先取AC的中點E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關系,求得點B到原點的最大距離.【詳解】解:取AC的中點E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點O,E,B不在一條直線上,則OB<OE+BE=18.若點O,E,B在一條直線上,則OB=OE+BE=18,∴當O,E,B三點在一條直線上時,OB取得最大值,最大值為18.故選:B【點睛】此題考查了直角三角形斜邊上的中線的性質以及三角形三邊關系.此題難度較大,注意掌握輔助線的作法,注意掌握數形結合思想的應用.3、D【解析】【分析】由菱形的性質和勾股定理即可求得AB的長.【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點睛】本題考查了菱形的性質、勾股定理等知識,熟練掌握菱形的性質,由勾股定理求出AB=13是解題的關鍵.4、C【解析】【分析】由中點的定義可得AE=CE,AD=BD,根據三角形中位線的性質可得DE//BC,DE=BC,根據平行線的性質可得∠ADE=∠ABC=90°,利用ASA可證明△MBD≌△EDA,可得MD=AE,DE=MB,即可證明四邊形DMBE是平行四邊形,可得MD=BE,進而可得四邊形DMBE的周長為2DE+2MD=BC+AC,即可得答案.【詳解】∵D,E分別是AB,AC的中點,∴AE=CE,AD=BD,DE為△ABC的中位線,∴DE//BC,DE=BC,∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四邊形DMBE是平行四邊形,∴MD=BE,∵AC=18,BC=14,∴四邊形DMBE的周長=2DE+2MD=BC+AC=18+14=32.故選:C.【點睛】本題考查全等三角形的判定與性質、三角形中位線的性質及平行四邊形的判定與性質,三角形中位線平行于第三邊且等于第三邊的一半;有一組對邊平行且相等的四邊形是平行四邊形;熟練掌握相關性質及判定定理是解題關鍵.5、A【解析】【分析】如圖,延長,交于點,證明,,再利用菱形的性質證明:陰影部分的周長,從而可得答案.【詳解】解:如圖,延長,交于點,四邊形是平行四邊形,,,四邊形是菱形,,陰影部分的周長,故需要測量的長度,故選A.【點睛】本題考查的是平行四邊形的性質,菱形的性質,證明陰影部分的周長是解本題的關鍵.6、B【解析】【分析】由題意根據三角形的內角和得到∠A=36°,由CD是斜邊AB上的中線,得到CD=AD,根據等腰三角形的性質即可得到結論.【詳解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜邊AB上的中線,∴CD=AD,∴∠ACD=∠A=36°.故選:B.【點睛】本題考查直角三角形的性質與三角形的內角和,熟練掌握直角三角形的性質即直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.7、C【解析】【分析】根據菱形的判定分析即可;【詳解】∵四邊形ABCD時平行四邊形,AO⊥BO,∴是菱形;故選C.【點睛】本題主要考查了菱形的判定,準確分析判斷是解題的關鍵.8、B【解析】【分析】利用折疊的性質可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進而可得出AE=CE,根據矩形性質可得AB=CD=4,BC=AD=8,∠D=90°,設AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質,∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點睛】本題考查了翻折變換、矩形的性質、勾股定理以及三角形的面積,利用勾股定理求出AE的長是解題的關鍵.9、B【解析】【分析】根據三角形中位線定理得到PD=BF=6,PD∥BC,根據平行線的性質得到∠PDA=∠CBA,同理得到∠PDQ=90°,根據勾股定理計算,得到答案.【詳解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵點P,D分別是AF,AB的中點,∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故選:B.【點睛】本題考查的是三角形中位線定理、勾股定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關鍵.10、D【解析】【分析】根據題意結合圖形可以證明EB=ED,進而證明△ABE≌△CDE;此時可以判斷選項A、B、D是成立的,問題即可解決.【詳解】解:由題意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四邊形ABCD為矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD為等腰三角形;在△ABE與△CDE中,∵,∴△ABE≌△CDE(HL);又∵△EBD為等腰三角形,∴折疊后得到的圖形是軸對稱圖形;綜上所述,選項A、B、C成立,∴不能證明D是正確的,故說法錯誤的是D,故選:D.【點睛】本題主要考查了翻折變換及其應用問題;解題的關鍵是靈活運用翻折變換的性質,找出圖中隱含的等量關系;借助矩形的性質、全等三角形的判定等幾何知識來分析、判斷、推理或解答.二、填空題1、【解析】【分析】過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,三點D、M、A′共線時,最小為A′D的長,利用勾股定理求A′D的長度即可解決問題.【詳解】解:過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點D、M、A′共線時,A′M+DM最小為A′D的長,∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點睛】本題主要考查了等腰三角形的性質,平行四邊形的判定與性質,勾股定理等知識,構造平行四邊形將AN轉化為DM是解題的關鍵.2、1【解析】【分析】根據基本作圖,得到EC是∠BCD的平分線,由AB∥CD,得到∠BEC=∠ECD=∠ECB,從而得到BE=BC,利用線段差計算即可.【詳解】根據基本作圖,得到EC是∠BCD的平分線,∴∠ECD=∠ECB,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案為:1.【點睛】本題考查了角的平分線的尺規(guī)作圖,等腰三角形的判定,平行線的性質,平行四邊形的性質,熟練掌握尺規(guī)作圖,靈活運用等腰三角形的判定定理是解題的關鍵.3、6【解析】【分析】由題意直接由菱形的面積等于對角線乘積的一半進行計算即可.【詳解】解:菱形的面積.故答案為:6.【點睛】本題考查菱形的性質,熟練掌握菱形的面積等于對角線乘積的一半是解題的關鍵.4、6或7【解析】【分析】分兩種情況進行討論,當在點的右側時,在點的左側時,根據△DEC≌△PFQ,可得,求解即可.【詳解】解:由題意可得,四邊形、為矩形,,、∴,∵△DEC≌△PFQ∴當在點的右側時,∴,解得當在點的左側時,∴,解得故答案為:或【點睛】此題考查了全等三角形的性質,矩形的判定與性質,解題的關鍵是根據題意,求得對應線段的長,分情況討論列方程求解.5、2.5.【解析】【分析】如圖所示,將容器側面展開,連接AB,則AB的長即為最短距離,然后分別求出AC,BC的長度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側面展開,連接AB,則AB的長即為最短距離,∵圓柱形容器高為0.8m,底面周長為4.8m在容器內壁離底部0.1m的點B處有一只蚊子,此時一只壁虎正好在容器的頂部點A處,∴,,,過點B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點睛】本題主要考查了平面展開—最短路徑,解題的關鍵在于能夠根據題意確定展開圖中AB的長即為所求.6、6【解析】【分析】根據三角形的中位線等于第三邊的一半進行計算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關鍵.7、①②③④【解析】【分析】①根據∠DAC=60°,OD=OA,得出△OAD為等邊三角形,再由△DFE為等邊三角形,得∠DOA=∠DEF=60°,再利用角的等量代換,即可得出結論①正確;②連接OE,利用SAS證明△DAF≌△DOE,再證明△ODE≌△OCE,即可得出結論②正確;③通過等量代換即可得出結論③正確;④延長OE至,使=OD,連接,通過△DAF≌△DOE,∠DOE=60°,可分析得出點F在線段AO上從點A至點O運動時,點E從點O沿線段運動到,從而得出結論④正確;【詳解】解:①設與的交點為如圖所示:∵∠DAC=60°,OD=OA,∴△OAD為等邊三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE為等邊三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故結論①正確;②如圖,連接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故結論②正確;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故結論③正確;④如圖,延長OE至,使=OD,連接,∵△DAF≌△DOE,∠DOE=60°,∴點F在線段AO上從點A至點O運動時,點E從點O沿線段運動到,∵∴設,則∴在中,即解得:∴=OD=AD=,∴點E運動的路程是,故結論④正確;故答案為:①②③④.【點睛】本題主要考查了幾何綜合,其中涉及到了等邊三角形判定及性質,相似三角形的判定及性質,全等三角形的性質及判定,三角函數的比值關系,矩形的性質等知識點,熟悉掌握幾何圖形的性質合理做出輔助線是解題的關鍵.8、4【解析】【分析】以AC為邊作正△AFC,并作FH⊥AC,垂足為點H,連接FD、CE,由直角三角形可求BC=4,,由“SAS”可證△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此時,故CE的最小值是.【詳解】解:以AC為邊作正△AFC,并作FH⊥AC,垂足為點H,連接FD、CE,如圖:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等邊三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴當FD⊥BD時,FD最小,此時∠FDC=∠DCH=∠CHF=90°,∴四邊形FDCH是矩形,∴,∴CE的最小值是.故答案為:4,.【點睛】本題主要考查了等邊三角形的性質,全等三角形的性質與判定,矩形的性質與判定,含30度角的直角三角形的性質,勾股定理等等,解題的關鍵在于能夠熟練掌握等邊三角形的性質.9、8【解析】【分析】運用三角形的中位線的知識解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關鍵.10、【解析】【分析】設BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關于x的方程,求解x即可.【詳解】解:設BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據折疊的性質可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點睛】本題主要考查了正方形的性質及翻轉折疊的性質,勾股定理,拓展一元一次方程,準確運用題目中的條件表示出EF列出方程式解題的關鍵.三、解答題1、(1)見解析;(2)6【分析】(1)由BC=BD,可得∠BCD=∠BDC,再由及,可得∠ECD=∠EDC,則有EC=ED,從而可得點B、E在線段CD的垂直平分線上,從而可得結論;(2)由D點是AB的中點及BC=BD,可得△BDC是等邊三角形,從而由30度的直角三角形的性質可分別求得EC、BE,由AE=BE,即可求得AC的長.【詳解】(1)∵BC=BD∴∠BCD=∠BDC,點B在線段CD的垂直平分線上∵,∴∠BCD+∠ECD=∠EDC+∠BDC∴∠ECD=∠EDC∴EC=ED∴點E在線段CD的垂直平分線上∴BE是線段CD的垂直平分線(2)D點是AB的中點,∠ACB=90゜∴CD是Rt△ABC斜邊上的中線∴CD=BD∴CD=BC=BD∴△BDC是等邊三角形∴∠BCD=∠DBC=60゜∴∠ECF=90゜-60゜=30゜由(1)知,BF⊥CD∴EC=2EF=2,∴BE=2EC=4∵DE⊥AB,點D為AB的中點∴AE=BE=4∴AC=AE+EC=4+2=6【點睛】本題考查了線段垂直平分線的性質定理和判定定理,直角三角形斜邊上的中線的性質,30度角的直角三角形的性質,等邊三角形的判定與性質;題目雖不難,但涉及的知識點比較多,靈活運用這些知識是解題的關鍵.2、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面積;(2)根據平行四邊形的性質求出AO,再利用勾股定理求出OB的長,故可求解.【詳解】解:(1)∵四邊形ABCD是平行四邊形,且AD=8

∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論