集合間的基本關(guān)系 2025-2026學(xué)年高一上學(xué)期數(shù)學(xué)人教A版必修第一冊_第1頁
集合間的基本關(guān)系 2025-2026學(xué)年高一上學(xué)期數(shù)學(xué)人教A版必修第一冊_第2頁
集合間的基本關(guān)系 2025-2026學(xué)年高一上學(xué)期數(shù)學(xué)人教A版必修第一冊_第3頁
集合間的基本關(guān)系 2025-2026學(xué)年高一上學(xué)期數(shù)學(xué)人教A版必修第一冊_第4頁
集合間的基本關(guān)系 2025-2026學(xué)年高一上學(xué)期數(shù)學(xué)人教A版必修第一冊_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1.2

集合間的基本關(guān)系

學(xué)習(xí)目標(biāo)1、理解集合之間的包含與相等的含義,能識別給定集合的子集2、在具體情境中,了解空集的含義3、對相似概念及符號的理解4、能使用Venn圖表達(dá)集合間的基本關(guān)系

兩個(gè)實(shí)數(shù)之有相等關(guān)系、大小關(guān)系,如5=5,5<7,5>3,等等。兩個(gè)集合之間是否也有類似的關(guān)系呢?觀察下面幾個(gè)例子,類比實(shí)數(shù)之間的關(guān)系,你能發(fā)現(xiàn)下面兩個(gè)集合之間的關(guān)系嗎?新課導(dǎo)入(1)A={1,2,3},B={1,2,3,4,5};(2)C為立德中學(xué)高一(2)班全體女生組成的集合,D為這個(gè)班全體學(xué)生組成的集合;(3)E={x|x是有兩條邊相等的三角形},F(xiàn)={x|x是等腰三角形}發(fā)現(xiàn)在(1)中,集合A的任何一個(gè)元素都是集合B的元素;在(2)中,集合C的任何一個(gè)元素都是集合D的元素

在(3)中,集合E的元素與集合F的元素是一樣的,也就是說集合E的任何一個(gè)元素都是集合F的元素。新課學(xué)習(xí)子集

一般地,對于兩個(gè)集合A,B,如果集合A中任意一個(gè)元素都是集合B中的元素,就稱集合A為集合B的子集(subset),記作A

B

(或B

A)。讀作“A包含于B”(或“B包含A”).BA在數(shù)學(xué)中,我們經(jīng)常用平面上封閉曲線的內(nèi)部代表集合,這種圖稱為Venn圖。集合A與B的包含關(guān)系,可以用左圖表示.。新課學(xué)習(xí)(1)任何一個(gè)集合是它本身的子集,即A?A(2)對于集合A,B,C,如果A?B,且B?C,那么A?C.BAC子集的有關(guān)結(jié)論:新課學(xué)習(xí)

一般地,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,那么集合A與集合B相等,記作A=B。也就是說,若A?B,且B?A,則A=B。A(B)

與實(shí)數(shù)中的結(jié)論“若a≥b,且b≥a,則a=b”相類比,你有什么體會(huì)??集合相等結(jié)論

若A=B,且B=C,則A=C.新課學(xué)習(xí)真子集

BA例如,在(1)中,A?B,但4∈B,且4?A,所以集合A是集合B的真子集.

如果集合A?B,但存在元素x∈B,且x?A,就稱集合A是集合B的真子集(propersubset),記作A?B(或B?A),讀作“A真包含于B”(或“B真包含A”).結(jié)論:

(1)

若A?B,且A≠B,則A?B.

(2)

若A?B,且B?C,則A?C.BAC新課學(xué)習(xí)空集

一般地,我們把不含任何元素的集合叫做空集(emptyset),記為?,并規(guī)定:空集是任何集合的子集。

特性:(1)空集只有一個(gè)子集,即它的本身,???

(2)若A≠?,則??A你能舉出幾個(gè)空集的例子嗎?

思考

(1)包含關(guān)系{a}?A與a∈A有什么區(qū)別?

(2){0},?與{?}之間有什么區(qū)別與聯(lián)系??

(1){a}?A表示集合{a}包含于集合A,是集合與集合之間的關(guān)系;而a∈A指的是元素a與集合的關(guān)系。

(2){0}是含有一個(gè)元素0的集合,,?是不含任何元素的集合,因此??{0},而{?}是含有一個(gè)元素?的集合。例題剖析例1寫出集合{a,b}的所有子集,并指出哪些是它的真子集.解:集合{a,b}的所有子集為?,{a},,{a,b}.真子集為?,{a},.求一個(gè)集合的子集、真子集個(gè)數(shù)的三個(gè)步驟

判斷列舉分類根據(jù)集合中元素的多少進(jìn)行分類根據(jù)子集、真子集的概念判斷出集合中含有元素的可能情況采用列舉法逐一寫出每種情況的子集集合元素個(gè)數(shù)所有子集子集個(gè)數(shù){a}1{a,b}2{a,b,c}3{a,b,c,d}4探究發(fā)現(xiàn)填寫下表,回答后面的問題(1)你能找出“元素個(gè)數(shù)”與“子集個(gè)數(shù)”之間的規(guī)律嗎?(2)如果一個(gè)集合中有n個(gè)元素,你能寫出計(jì)算它的所有子集和真子集個(gè)數(shù)的公式嗎(用n表達(dá))?

例題剖析

BC例題剖析例3

判斷下列各題中集合A是否為集合B的子集,并說明理由:(1)A={1,2,3},B={x|x是8的約數(shù)};(2)A={x|x是長方形},B={x|x是兩條對角線相等的平行四邊形}

解:(1)因?yàn)?不是8的約數(shù),所以集合A不是集合B的子集.

(2)因?yàn)槿魓是長方形,則x一定是兩條對角線相等的平行四邊形,所以集合A是集合B的子集.方法提煉判斷集合間關(guān)系的常用方法列舉觀察法當(dāng)集合中元素較少時(shí),可列出集合中的全部元素,通過定義得出集合之間的關(guān)系集合元素特征法首先確定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判斷關(guān)系數(shù)形結(jié)合法利用數(shù)軸或Venn圖等直觀的判斷集合間的關(guān)系.不等式的解集之間的關(guān)系,適合用數(shù)軸法例題剖析例4

已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B?A,求實(shí)數(shù)m的取值范圍.

解得,2≤m≤3解:①當(dāng)B=?時(shí),由m+1>2m-1,得m<2,滿足題意;

②當(dāng)B≠?時(shí),如圖所示-2m+102m-15x

∴綜上可得,m的取值范圍是{m|m≤3}方法提煉已知集合間的關(guān)系求參數(shù)問題的解題策略(1)若已知集合是有限集,求解時(shí),一般根據(jù)對應(yīng)關(guān)系直接列方程(2)若已知集合是無限集,求解時(shí),通常借助數(shù)軸,利用數(shù)軸分析法,將各個(gè)集合在數(shù)軸上表示出來,以形定數(shù),還要注意驗(yàn)證端點(diǎn)值,做到準(zhǔn)確無誤。一般含“=”用實(shí)心圓點(diǎn)表示,不含“=”用空心圓圈表示.(3)此類問題還要注意是否存在空集的情況,因?yàn)榭占侨魏渭系淖蛹?隨堂小測

√××√√隨堂小測2、

已知集合M={1},N={1,2,3}能夠準(zhǔn)確表示集合M與N之間關(guān)系的是(

)A.M<NB.M∈NC.N?MD.M?ND3、

已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},則滿足條件A?C?B的集合C的個(gè)數(shù)為(

)A.1B.2C.3D.4D4、已知集合A={x|-1≤x≤3},集合B={x|1-m≤x≤1+m}.若B?A,則m的取值范圍是(

)A.{m|m≤2}

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論