版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
海南省五指山市中考數學復習提分資料考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、在平面直角坐標系中,已知點與點關于原點對稱,則的值為()A.4 B.-4 C.-2 D.22、從下列命題中,隨機抽取一個是真命題的概率是()(1)無理數都是無限小數;(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)弧長是,面積是的扇形的圓心角是.A. B. C. D.13、已知關于x的方程有一個根為1,則方程的另一個根為(
)A.-1 B.1 C.2 D.-24、如圖,在中,,,,將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是()A. B. C. D.5、當0x3,函數y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,4二、多選題(5小題,每小題3分,共計15分)1、請觀察下列美麗的圖案,你認為既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2、如圖,在中,為直徑,,點D為弦的中點,點E為上任意一點,則的大小不可能是(
)A. B. C. D.3、下列圖形中,是中心對稱圖形的是(
)A. B.C. D.4、觀察如圖推理過程,錯誤的是(
)A.因為的度數為,所以B.因為,所以C.因為垂直平分,所以D.因為,所以5、如圖在四邊形中,,,,為的中點,以點為圓心、長為半徑作圓,恰好使得點在圓上,連接,若,則下列說法中正確的是(
)A.是劣弧的中點 B.是圓的切線C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、在平面直角坐標系中,將點繞坐標原點順時針旋轉后得到點Q,則點Q的坐標是___________.2、一個圓錐的底面半徑r=6,高h=8,則這個圓錐的側面積是_____.3、從﹣2,1兩個數中隨機選取一個數記為m,再從﹣1,0,2三個數中隨機選取一個數記為n,則m、n的取值使得一元二次方程x2﹣mx+n=0有兩個不相等的實數根的概率是_____.4、已知中,,,,以為圓心,長度為半徑畫圓,則直線與的位置關系是__________.5、如果關于x的方程x2﹣3x+k=0(k為常數)有兩個相等的實數根,那么k的值是___.四、簡答題(2小題,每小題10分,共計20分)1、如圖所示,直線y=x+2與坐標軸交于A、B兩點,與反比例函數y=(x>0)交于點C,已知AC=2AB.(1)求反比例函數解析式;(2)若在點C的右側有一平行于y軸的直線,分別交一次函數圖象與反比例函數圖象于D、E兩點,若CD=CE,求點D坐標.2、如圖,拋物線與軸交于兩點,與軸交于點,且,.(1)求拋物線的表達式;(2)點是拋物線上一點.①在拋物線的對稱軸上,求作一點,使得的周長最小,并寫出點的坐標;②連接并延長,過拋物線上一點(點不與點重合)作軸,垂足為,與射線交于點,是否存在這樣的點,使得,若存在,求出點的坐標;若不存在,請說明理由.五、解答題(4小題,每小題10分,共計40分)1、若二次函數圖像經過,兩點,求、的值.2、解題與遐想.如圖,Rt△ABC的內切圓與斜邊AB相切于點D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實非常神奇了…數學劉老師:大家想一想,既然結果如此簡單到極致,不計算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個東西,這個圖能不能尺規(guī)畫出來啊感覺圖都定了.我怎么想不出來呢?計算驗證(1)通過計算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過拼圖能直接“看”出“20”請在圖中畫出拼圖后的4個直角三角形甲、乙、丙、丁的位置,作必要標注并簡要說明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點D在線段AB上,以AB為斜邊求作一個Rt△ABC,使它的內切圓與斜邊AB相切于點D.(保留作圖的痕跡,寫出必要的文字說明)3、二次函數與軸分別交于點和點,與軸交于點,直線的解析式為,軸交直線于點.(1)求二次函數的解析式;(2)為線段上一動點,過點且垂直于軸的直線與拋物線及直線分別交于點、.直線與直線交于點,當時,求值.4、如圖,在平面直角坐標系中,經過原點,且與軸交于點,與軸交于點,點在第二象限上,且,則__.-參考答案-一、單選題1、C【分析】根據關于原點對稱的點的坐標特點:兩個點關于原點對稱時,它們的坐標符號相反即可得到答案.【詳解】解:點與點關于原點對稱,,,.故選:C.【點睛】此題主要考查了原點對稱點的坐標特點,解題的關鍵是掌握點的變化規(guī)律.2、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】解:(1)無理數都是無限小數,是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)設扇形半徑為r,圓心角為n,∵弧長是,則=,則,∵面積是,則=,則360×240,則,則n=3600÷24=150°,故扇形的圓心角是,是假命題,則隨機抽取一個是真命題的概率是,故選C.【考點】本題考查了命題的真假,概率,扇形的弧長和面積,無理數,因式分解,正方體展開圖,知識點較多,難度一般,解題的關鍵是運用所學知識判斷各個命題的真假.3、C【解析】【分析】根據根與系數的關系列出關于另一根t的方程,解方程即可.【詳解】解:設關于x的方程的另一個根為x=t,∴1+t=3,解得,t=2故選:C.【考點】本題考查了根與系數的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=?,x1x2=.4、C【分析】過點A作AC⊥x軸于點C,設,則,根據勾股定理,可得,從而得到,進而得到∴,可得到點,再根據旋轉的性質,即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設,則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉90°,則旋轉后點A的對應點的坐標是,∴將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉,解直角三角形等知識,解題的關鍵是求出點A的坐標,屬于中考??碱}型.5、A【解析】【分析】利用配方法把原方程化為頂點式,再根據二次函數的性質即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點】本題考查二次函數的最值,掌握二次函數的性質與利用配方法將一般式改為頂點式是解答本題的關鍵.二、多選題1、AB【解析】【分析】根據軸對稱圖形(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合)和中心對稱圖形(把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合)的定義進行判斷.【詳解】A選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;B選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;C選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意;D選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意.故選:AB.【考點】考查中心對稱圖形和軸對稱圖形的概念,解題關鍵是熟記其概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.2、ACD【解析】【分析】延長ED交⊙O于N,連接OD,并延長交⊙O于M,根據已知條件知的度數是80°,根據點D為弦AC的中點得出,求出、的度數=40°,即可求出40°<的度數<80°,再得出答案即可.【詳解】解:延長ED交⊙O于N,連接OD,并延長交⊙O于M,∵∠AOC=80°,∴的度數是80°,∵點D為弦AC的中點,OA=OC,∴∠AOD=∠COD,∴,即M為的中點,∴、的度數都是×80°=40°,∵>,∴40°<的度數<80°,∴20°<∠CED<40°,∴選項ACD符合題意;選項B不符合題意;故選:ACD.【考點】本題考查了圓心角、弧、弦之間的關系,圓周角定理,等腰三角形的性質等知識點,能求出的范圍是解此題的關鍵.3、BD【解析】【分析】根據中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,進而判斷得出答案.【詳解】解:A.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不符合題意;B.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意;C.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不合題意;D.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意.故選:BD.【考點】本題考查的是中心對稱圖形的概念,把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.4、ABC【解析】【分析】A.
根據定理“圓心角的度數等于它所對的弧的度數。”可得.B.
根據定理“同圓或等圓中,相等的圓心角所對的弧相等?!笨傻?C.
根據“垂徑定理”及弦的定義可得.D.
根據“在同圓或等圓中,若兩個圓心角、兩條弧、兩條弦、兩條弦的弦心距中得到的四組量中有一組量相等,則對應的其余各組量也相等?!笨傻?【詳解】由定理“圓心角的度數等于它所對的弧的度數?!盇.∵的度數是∴,故選項A錯誤.B.
由定理“同圓中相等的圓心角所對的弧相等。”,B選項題干中不是同一個圓,故選項B錯誤.C.
由“垂徑定理:垂直于弦(非直徑)的直徑平分這條弦,并且平分弦所對的兩條弧。沒有過圓心,不是直徑,并且,根據弦的定義,不是圓O的弦,因此無法判斷,故選項C錯誤.D.
∵∴即由定理“在同圓或等圓中,若兩個圓心角、兩條弧、兩條弦、兩條弦的弦心距中有一組量相等,則對應的其余各組量也相等?!彼?,故選項D正確.【考點】本題旨在考查圓,圓心角,所對應的圓弧及弦的相關定義及性質定理,熟練掌握圓的相關定理是解題的關鍵.5、ABC【解析】【分析】直接利用圓周角定理以及結合圓心角、弧、弦的關系、切線的判定方法、平行線的判定方法、四邊形內角和分別分析得出答案.【詳解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此選項正確;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切線,故此選項正確;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此選項正確;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此選項錯誤.故選擇ABC.【考點】此題主要考查了切線的判定以及圓周角與弧的關系、四邊形內角和、平行線的判定方法等知識,正確掌握相關判定方法是解題關鍵.三、填空題1、【分析】繞坐標原點順時針旋轉即關于原點中心對稱,找到關于原點中心對稱的點的坐標即可,根據關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數,即可求解.【詳解】解:將點繞坐標原點順時針旋轉后得到點Q,則點Q的坐標是故答案為:【點睛】本題考查了求一個點關于原點中心對稱的點的坐標,掌握關于原點中心對稱的點的坐標特征是解題的關鍵.關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數.2、60π【解析】【分析】利用圓錐的側面積公式:,求出圓錐的母線即可解決問題.【詳解】解:圓錐的母線,∴圓錐的側面積=π×10×6=60π,故答案為:60π.【考點】本題考查了圓錐的側面積,勾股定理等知識,解題的關鍵是記住圓錐的側面積公式.3、【分析】先畫樹狀圖列出所有等可能結果,從中找到使方程有兩個不相等的實數根,即m>n的結果數,再根據概率公式求解可得.【詳解】解:畫樹狀圖如下:由樹狀圖知,共有12種等可能結果,其中能使方程x2-mx+n=0有兩個不相等的實數根,即m2-4n>0,m2>4n的結果有4種結果,∴關于x的一元二次方程x2-mx+n=0有兩個不相等的實數根的概率是,故答案為:.【點睛】本題是概率與一元二次方程的根的判別式相結合的題目.正確理解列舉法求概率的條件以及一元二次方程有根的條件是關鍵.4、相切【分析】過點C作CD⊥AB于D,在Rt△ABC中,根據勾股定理AB=cm,利用面積得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根據CD=r=4.8cm,得出直線與的位置關系是相切.【詳解】解:過點C作CD⊥AB于D,在Rt△ABC中,根據勾股定理AB=cm,∴S△ABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直線與的位置關系是相切.故答案為:相切.【點睛】本題考查勾股定理,直角三角形面積,圓的切判定,掌握勾股定理,直角三角形面積,圓的切判定是解題關鍵.5、【解析】【分析】根據判別式的意義得到Δ=(-3)2-4k=0,然后解一元一次方程即可.【詳解】解:根據題意得Δ=(-3)2-4k=0,解得k=.故答案為.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數根;當Δ=0,方程有兩個相等的實數根;當Δ<0,方程沒有實數根.四、簡答題1、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點坐標代入y=中求出k得到反比例函數解析式;(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點坐標.【詳解】解:(1)作CM⊥y軸于M,如圖,當x=0時,y=x+2=2,則A(0,2),當y=0時,x+2=0,解得x=﹣2,則B(﹣2,0),∵MC∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函數解析式為y=;(2)MC交直線DE于N,如圖,∵MC=MA,∴△MAC為等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND為等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,設CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考點】本題是反比例函數與一次函數的綜合題,涉及到待定系數法求函數解析式、平行線分線段成比例定理、等腰三角形的性質,有一定的難度2、(1);(2)①連接交拋物線對稱軸于點,則點即為所求,點的坐標為;②存在;點的坐標為或.【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可寫出拋物線的交點式.(2)①因為關于對稱軸對稱,所以,由兩點之間線段最短,知連接交拋物線對稱軸于點,則點即為所求,先用待定系數法求出解析式,將對稱軸代入得到點坐標.②設點,根據拋物線的解析式、直線的解析式,寫出Q、M的坐標,分當在上方、下方兩種情況,列關于m的方程,解出并取大于-2的解,即可寫出的坐標.【詳解】(1)∵,,結合圖象,得A(-2,0),C(3,0),∴拋物線可表示為:,∴拋物線的表達式為;(2)①∵關于對稱軸對稱,∴,∴連接交拋物線對稱軸于點,則點即為所求.將點,的坐標代入一次函數表達式,得直線的函數表達式為.拋物線的對稱軸為直線,當時,,故點的坐標為;②存在;設點,則,.當在上方時,,,,解得(舍)或;當在下方時,,,,解得(舍)或,綜上所述,的值為或5,點的坐標為或.【考點】本題考查了二次函數與一次函數綜合問題,熟練掌握待定系數法求解析式、最短路徑問題是解題的基礎,動點問題中分類討論與數形結合轉化為方程問題是解題的關鍵.五、解答題1、b=-3,c=-4.【解析】【分析】將,代入中,求解二元一次方程組即可解題.【詳解】解:將,代入中得,解得:∴b=-3,c=-4.【考點】本題考查了含參數的二次函數的求解,屬于簡單題,熟悉求解二元一次方程組的方法是解題關鍵.2、(1)S△ABC=20;(2)見解析;(3)見解析.【分析】(1)設⊙O的半徑為r,由切線長定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,進而求得結果;(2)根據切線長定理可證明甲和乙兩個三角形全等,丙丁兩個三角形全等,故將甲乙圖形放在OE為邊的上方,將丙丁以OP為邊放在右側,圍成矩形的邊長是4和5;(3)可先計算∠AFB=135°,根據“定弦對定角”作F點的軌跡,根據切線性質,過點F作AB的垂線,再根據直徑所對的圓周角是90°,確定點C.【詳解】解:(1)如圖1,設⊙O的半徑為r,連接OE,OF,∵⊙O內切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四邊形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC中,由勾股定理得,(r+4)2+(r+5)2=92,∴r2+9r=20,∴S△ABC=====20;(2)如圖2,(3)設△ABC的內切圓記作⊙F,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 3D打印模型輔助神經外科手術規(guī)劃的意義
- 2025年北京航空航天大學可靠性與系統工程學院招聘備考題庫及參考答案詳解1套
- 雄安國創(chuàng)中心科技有限公司2026年校園招聘10人備考題庫及一套答案詳解
- 2025年阿拉爾市塔門鎮(zhèn)國有資產經營有限責任公司招聘備考題庫帶答案詳解
- 3D打印導板在神經外科手術中的操作規(guī)范
- 3D打印導板在聽神經瘤切除術中的精準應用
- 2025年重慶新華出版集團招聘53人備考題庫參考答案詳解
- 簡約風學生開題答辯農學專業(yè)
- 2025年仰恩大學公開招聘人事處工作人員備考題庫及1套參考答案詳解
- 2025年河北定向選調生招錄683人備考題庫(華東師范大學)及參考答案詳解
- 學堂在線 雨課堂 學堂云 文物精與文化中國 期末考試答案
- 關于印發(fā)《2026年度安全生產工作計劃》的通知
- 跨境電子商務渠道管理
- (21)普通高中西班牙語課程標準日常修訂版(2017年版2025年修訂)
- 2025年江蘇中煙筆試試題
- 洗潔精產品介紹
- 財務給銷售培訓銷售知識課件
- 年產1000噸溴代吡咯腈農藥中間體項目可行性研究報告模板申批拿地用
- 太空探索基礎設施建設施工方案
- 2025年中國復合材料電池外殼行業(yè)市場全景分析及前景機遇研判報告
- 陜西亞聯電信網絡股份有限公司商業(yè)計劃書
評論
0/150
提交評論