版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學上冊《軸對稱》定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,牧童在A處放牛,其家在B處,A、B到河岸的距離分別為AC和BD,且AC=BD,若點A到河岸CD的中點的距離為500米,則牧童從A處把牛牽到河邊飲水再回家,最短距離是()A.750米 B.1000米 C.1500米 D.2000米2、若點和點關于軸對稱,則點在()A.第一象限 B.第二象限C.第三象限 D.第四象限3、對于問題:如圖1,已知∠AOB,只用直尺和圓規(guī)判斷∠AOB是否為直角?小意同學的方法如圖2:在OA、OB上分別取C、D,以點C為圓心,CD長為半徑畫弧,交OB的反向延長線于點E,若測量得OE=OD,則∠AOB=90o.則小意同學判斷的依據(jù)是(
)A.等角對等邊 B.線段中垂線上的點到線段兩段距離相等C.垂線段最短 D.等腰三角形“三線合一”4、如圖,在矩形中,,,動點滿足,則點到、兩點距離之和的最小值為(
)A. B. C. D.5、如圖,中,∠BCA=90°,∠ABC=22.5°,將沿直線BC折疊,得到點A的對稱點A′,連接BA′,過點A作AH⊥BA′于H,AH與BC交于點E.下列結論一定正確的是(
)A.A′C=A′H B.2AC=EB C.AE=EH D.AE=A′H6、將三角形紙片()按如圖所示的方式折疊,使點C落在邊上的點D,折痕為.已知,若以點B、D、F為頂點的三角形與相似,那么的長度是(
)A.2 B.或2 C. D.或27、如圖,在和中,,連接交于點,連接.下列結論:①;②;③平分;④平分.其中正確的個數(shù)為().A.4 B.3 C.2 D.18、下列圖形中,是軸對稱圖形的是()A. B.C. D.9、下列命題中,屬于假命題的是(
)A.邊長相等的兩個等邊三角形全等 B.斜邊相等的兩個等腰直角三角形全等C.周長相等的兩個三角形全等 D.底邊和頂角對應相等的兩個等腰三角形全等10、自新冠肺炎疫情發(fā)生以來,全國人民共同抗疫.下面是科學防控知識的圖片,圖片上有圖案和文字說明,其中的圖案是軸對稱圖形的是()A. B.C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,將一張直角三角形紙片對折,使點B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長是_____cm.2、如圖,在△ABC中,AB=AC=10,BC=12,AD⊥BC于點D,點E、F分別是線段AB、AD上的動點,且BE=AF,則BF+CE的最小值為_____.3、如圖,在一個池塘兩旁有一條筆直小路(B,C為小路端點)和一棵小樹(A為小樹位置)測得的相關數(shù)據(jù)為:米,則________米.4、內(nèi)部有一點P,,點P關于的對稱點為M,點P關于的對稱點為N,若,則的周長為___________.5、如圖,在和中,,,,,以點為頂點作,兩邊分別交,于點,,連接,則的周長為______.6、若等腰三角形的一個底角為,則這個等腰三角形的頂角為_____.7、如圖,一束光沿方向,先后經(jīng)過平面鏡、反射后,沿方向射出,已知,,則_________.8、如圖,在中,垂直平分,點P為直線上一動點,則周長的最小值是________.9、如圖,點D是的平分線OC上一點,過點D作交射線OA于點E,則線段DE與OE的數(shù)量關系為:DE______OE(填“>”或“=”或“<”).10、如圖,分別以的邊,所在直線為稱軸作的對稱圖形和,,線段與相交于點O,連接、、、.有如下結論:①;②;③平分:④;③.其中正確的結論個數(shù)為______.三、解答題(5小題,每小題6分,共計30分)1、如圖,已知AB=AC,AD=AE,BD和CE相交于點O.(1)求證:△ABD≌△ACE;(2)判斷△BOC的形狀,并說明理由.2、如圖,中,,點在邊上,.求證.3、已知:如圖,,相交于點O,,.求證:(1);(2).4、如圖,在四邊形ABCD中,,∠BAD=90°,點E在AC上,EC=ED=DA.求∠CAB的度數(shù).5、如圖,一張紙上有線段AB;(1)請用尺規(guī)作圖,作出線段AB的垂直平分線(保留作圖痕跡,不寫作法和證明);(2)若不用尺規(guī)作圖,你還有其它作法嗎?請說明作法(不作圖);-參考答案-一、單選題1、B【解析】【詳解】解:作A的對稱點,連接B交CD于P,,∴AP+PB=,此時值最小,在中,,,,∵點A到河岸CD的中點的距離為500米,∴B=AP+PB=1000米2、D【解析】【分析】根據(jù)關于x軸對稱的點的橫坐標相等,縱坐標互為相反數(shù),可得答案.【詳解】點A(a?2,3)和點B(?1,b+5)關于x軸對稱,得a?2=-1,b+5=-3.解得a=1,b=?8.則點C(a,b)在第四象限,故選:D.【考點】本題考查了關于y軸對稱的點的坐標,利用關于y軸對稱的點的橫坐標互為相反數(shù),縱坐標相等得出a?2=-1,b+5=-3是解題關鍵.3、B【解析】【分析】由垂直平分線的判定定理,即可得到答案.【詳解】解:根據(jù)題意,∵CD=CE,OE=OD,∴AO是線段DE的垂直平分線,∴∠AOB=90°;則小意同學判斷的依據(jù)是:線段中垂線上的點到線段兩段距離相等;故選:B.【考點】本題考查了垂直平分線的判定定理,解題的關鍵是熟練掌握垂直平分線的判定定理進行判斷.4、D【解析】【分析】由,可得△PAB的AB邊上的高h=2,表明點P在平行于AB的直線EF上運動,且兩平行線間的距離為2;延長FC到G,使FC=CG,連接AG交EF于點H,則點P與H重合時,PA+PB最小,在Rt△GBA中,由勾股定理即可求得AG的長,從而求得PA+PB的最小值.【詳解】解:設△PAB的AB邊上的高為h∵∴∴h=2表明點P在平行于AB的直線EF上運動,且兩平行線間的距離為2,如圖所示∴BF=2∵四邊形ABCD為矩形∴BC=AD=3,∠ABC=90゜∴FC=BC-BF=3-2=1延長FC到G,使CG=FC=1,連接AG交EF于點H∴BF=FG=2∵EF∥AB∴∠EFG=∠ABC=90゜∴EF是線段BG的垂直平分線∴PG=PB∵PA+PB=PA+PG≥AG∴當點P與點H重合時,PA+PB取得最小值AG在Rt△GBA中,AB=5,BG=2BF=4,由勾股定理得:即PA+PB的最小值為故選:D.【考點】本題是求兩條線段和的最小值問題,考查了矩形的性質(zhì),勾股定理,線段垂直平分線的性質(zhì)、兩點之間線段最短等知識,難點在于確定點P運動的路徑,路徑確定后就是典型的將軍飲馬問題.5、B【解析】【分析】證明,即可得出正確答案.【詳解】證明:∵∠BCA=90°,∠ABC=22.5°∴,∵沿直線BC折疊,得到點A的對稱點A′,連接BA′,∴,∴,∵∠BCA=90°,∴,∵∴,即:,∴,∵AH⊥BA′,∴是等腰直角三角形,∴,,∴,在和中,∵,∴,∴,故選項正確,故選;.【考點】本題考查了折疊、等腰三角形、等腰直角三角形、三角形全等,解決本題的關鍵是證明全等,得出線段.6、B【解析】【分析】分兩種情況:若或若,再根據(jù)相似三角形的性質(zhì)解題【詳解】∵沿折疊后點C和點D重合,∴,設,則,以點B、D、F為頂點的三角形與相似,分兩種情況:①若,則,即,解得;②若,則,即,解得.綜上,的長為或2,故選:B.【考點】本題考查相似三角形的性質(zhì),是重要考點,掌握相關知識是解題關鍵.7、B【解析】【分析】根據(jù)題意逐個證明即可,①只要證明,即可證明;②利用三角形的外角性質(zhì)即可證明;④作于,于,再證明即可證明平分.【詳解】解:∵,∴,即,在和中,,∴,∴,①正確;∴,由三角形的外角性質(zhì)得:∴°,②正確;作于,于,如圖所示:則°,在和中,,∴,∴,∴平分,④正確;正確的個數(shù)有3個;故選B.【考點】本題是一道幾何的綜合型題目,難度系數(shù)偏上,關鍵在于利用三角形的全等證明來證明線段相等,角相等.8、C【解析】【分析】依據(jù)軸對稱圖形的定義逐項分析即可得出C選項正確.【詳解】解:因為選項A、B、D中的圖形都不能通過沿某條直線折疊直線兩旁的部分能達到完全重合,所以它們不符合軸對稱圖形的定義和要求,因此選項A、B、D中的圖形都不是軸對稱圖形,而C選項中的圖形沿上下邊中點的連線折疊后,折痕的左右兩邊能完全重合,因此符合軸對稱圖形的定義和要求,因此C選項中的圖形是軸對稱圖形,故選:C.【考點】本題主要考查了軸對稱圖形的定義,學生需要掌握軸對稱圖形的定義內(nèi)容,理解軸對稱圖形的特征,方能解決問題找對圖形,同時也考查了學生對圖形的感知力和空間想象的能力.9、C【解析】【分析】根據(jù)全等三角形的判定定理,等腰三角形的性質(zhì),等邊三角形的性質(zhì),直角三角形的性質(zhì),逐一判斷選項,即可得到答案.【詳解】解:A、邊長相等的兩個等邊三角形全等,是真命題,故A不符合題意;B、斜邊相等的兩個等腰直角三角形全等,是真命題,故B不符合題意;C、周長相等的兩個三角形不一定全等,原命題是假命題,故C符合題意;D、底邊和頂角對應相等的兩個等腰三角形全等,是真命題,故D不符合題意.故選:C.【考點】本題考查了命題與定理,牢記有關的性質(zhì)、定義及定理是解決此類題目的關鍵.10、D【解析】【分析】根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形進行分析即可.【詳解】解:A、不是軸對稱圖形,不合題意;B、不是軸對稱圖形,不合題意;C、不是軸對稱圖形,不合題意;D、是軸對稱圖形,符合題意.故選:D.【考點】本題考查了軸對稱圖形,熟練掌握軸對稱圖形的定義是解題的關鍵.二、填空題1、18【解析】【分析】【詳解】解:根據(jù)折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長是18cm.故答案為8.2、【解析】【分析】過點作,使,連接,,可證明,則當、、三點共線時,的值最小,最小值為,求出即可求解.【詳解】解:過點作,使,連接,,,,,,,,,當、、三點共線時,的值最小,,,,在中,,故答案為:.【考點】本題考查軸對稱求最短距離,熟練掌握軸對稱求最短距離的方法,通過構造三角形全等,將所求的問題轉(zhuǎn)化為將軍飲馬求最短距離是解題的關鍵.3、48【解析】【分析】先說明△ABC是等邊三角形,然后根據(jù)等邊三角形的性質(zhì)即可解答.【詳解】解:∵∴∠BAC=180°-60°-60°=60°∴∠BAC=∠ABC=∠BCA=60°∴△ABC是等邊三角形∴AC=BC=48米.故答案為48.【考點】本題考查了等邊三角形的判定和性質(zhì),證得△ABC是等邊三角形是解答本題的關鍵.4、15【解析】【分析】根據(jù)軸對稱的性質(zhì)可證∠MON=2∠AOB=60°;再利用OM=ON=OP,即可求出的周長.【詳解】解:根據(jù)題意可畫出下圖,∵OA垂直平分PM,OB垂直平分PN.∴∠MOA=∠AOP,∠NOB=∠BOP;OM=OP=ON=5cm.∴∠MON=2∠AOB=60°.∴為等邊三角形。△MON的周長=3×5=15.故答案為:15.【考點】此題考查了軸對稱的性質(zhì)及相關圖形的周長計算,根據(jù)軸對稱的性質(zhì)得出∠MON=2∠AOB=60°是解題關鍵.5、4【解析】【分析】延長AC至E,使CE=BM,連接DE.證明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,證明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,進而得出答案.【詳解】延長AC至E,使CE=BM,連接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周長=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案為:4.【考點】本題考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)等知識;構造輔助線證明三角形全等是解題的關鍵.6、36°【解析】【分析】根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和即可得到結論.【詳解】∵等腰三角形的一個底角為,∴等腰三角形的頂角,故答案為.【考點】本題考查了等腰三角形的性質(zhì),熟練掌握等腰三角形的性質(zhì)是解題的關鍵.7、40°##40度【解析】【分析】根據(jù)入射角等于反射角,可得,根據(jù)三角形內(nèi)角和定理求得,進而即可求解.【詳解】解:依題意,,∵,,,∴,.故答案為:40.【考點】本題考查了軸對稱的性質(zhì),三角形內(nèi)角和定理的應用,掌握軸對稱的性質(zhì)是解題的關鍵.8、7【解析】【分析】根據(jù)題意知點B關于直線EF的對稱點為點C,故當點P與點D重合時,AP+BP的最小值,求出AC長度即可得到結論.【詳解】解:∵垂直平分,∴B,C關于直線對稱.設交于點D,∴當P和D重合時,的值最小,最小值等于的長,∴周長的最小值是.【考點】本題考查了勾股定理,軸對稱-最短路線問題的應用,解題的關鍵是找出P的位置.9、=【解析】【分析】首先由平行線的性質(zhì)求得∠EDO=∠DOB,然后根據(jù)角平分線的定義求得∠EOD=∠DOB,最后根據(jù)等腰三角形的判定和性質(zhì)即可判斷.【詳解】解:∵ED∥OB,∴∠EDO=∠DOB,∵D是∠AOB平分線OC上一點,∴∠EOD=∠DOB,∴∠EOD=∠EDO,∴DE=OE,故答案為:=.【考點】本題主要考查的是平行線的性質(zhì)、角平分線的定義以及等角對等邊,根據(jù)平行線的性質(zhì)和角平分線的定義求得∠EOD=∠EDO是解題的關鍵.10、3【解析】【分析】根據(jù)軸對稱的性質(zhì)以及全等三角形的性質(zhì)一一判斷即可.【詳解】解:和是的軸對稱圖形,,,,,故①正確;,由翻折的性質(zhì)得,,又,,故②正確;,,,邊上的高與邊上的高相等,即點到兩邊的距離相等,平分,故③正確;只有當時,,才有,故④錯誤;在和中,,,,,,故⑤錯誤;綜上所述,結論正確的是①②③.故答案為:3.【考點】本題考查軸對稱的性質(zhì),全等三角形的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.三、解答題1、(1)見解析;(2)等腰三角形,理由見解析.【解析】【分析】(1)由“SAS”可證△ABD≌△ACE;(2)由全等三角形的性質(zhì)可得∠ABD=∠ACE,由等腰三角形的性質(zhì)可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得結論.【詳解】證明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【考點】本題考查了全等三角形的判定與性質(zhì),等腰三角形的判定,熟記相關定理是解題關鍵.2、證明見解析.【解析】【分析】先根據(jù)等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026四川南充營華物業(yè)管理有限公司招聘工作人員28人筆試模擬試題及答案解析
- 2025山東大學晶體材料研究院(晶體材料全國重點實驗室)非事業(yè)編制人員招聘1人考試備考題庫附答案
- 2025年齊齊哈爾泰來縣城鎮(zhèn)建設服務中心公開招聘市政園林養(yǎng)護工作人員3人備考題庫附答案
- 2025年天地(榆林)開采工程技術有限公司招聘(3人)考試參考題庫附答案
- 2025廣東省清遠市清城區(qū)下半年招聘中學教師45人備考題庫附答案
- 2025山東青島上合臨空控股發(fā)展集團有限公司社會招聘5人考前自測高頻考點模擬試題附答案
- 2025年舟山市定海區(qū)醫(yī)療集團赴浙江中醫(yī)藥大學招聘醫(yī)學類畢業(yè)生2人(公共基礎知識)測試題附答案
- 2026貴州黔南州惠水縣廉潔征兵監(jiān)督員筆試模擬試題及答案解析
- 2026安徽醫(yī)科大學臨床醫(yī)學院人才招聘124人筆試備考試題及答案解析
- 制造企業(yè)年度生產(chǎn)總結【演示文檔課件】
- 動火作業(yè)施工方案5篇
- 2024年重慶市優(yōu)質(zhì)企業(yè)梯度培育政策解讀學習培訓課件資料(專精特新 專精特新小巨人中小企業(yè) 注意事項)
- 老年人高血壓的護理
- 糧油產(chǎn)品授權書
- 責任督學培訓課件
- 關于安吉物流市場的調(diào)查報告
- 抑郁病診斷證明書
- 心電監(jiān)測技術操作考核評分標準
- 歷史時空觀念的教學與評價
- 維克多高中英語3500詞匯
- 第五屆全國輔導員職業(yè)能力大賽案例分析與談心談話試題(附答案)
評論
0/150
提交評論