版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
新高考數(shù)列題真題及答案
一、單項選擇題1.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{1}=1\),\(a_{n+1}=2a_{n}+1\),則\(a_{5}\)的值為()A.30B.31C.32D.33答案:B2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}=2\),\(a_{5}=16\),則公比\(q\)為()A.\(-2\)B.2C.\(\pm2\)D.4答案:B3.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(a_{3}=5\),\(S_{3}=9\),則\(a_{1}\)為()A.1B.2C.3D.4答案:A4.數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式\(a_{n}=n^{2}-5n+4\),則數(shù)列\(zhòng)(\{a_{n}\}\)的最小項是()A.第2項B.第3項C.第2項或第3項D.第4項答案:C5.設\(\{a_{n}\}\)是公差為\(d\)的等差數(shù)列,\(S_{n}\)為其前\(n\)項和,若\(S_{10}=S_{11}\),且\(a_{1}>0\),則()A.\(d>0\)B.\(a_{11}=0\)C.\(S_{n}\)的最大值是\(S_{20}\)D.\(S_{n}\)的最小值是\(S_{20}\)答案:B6.已知等比數(shù)列\(zhòng)(\{a_{n}\}\)的各項均為正數(shù),且\(a_{3}a_{5}=4\),則\(\log_{2}a_{1}+\log_{2}a_{2}+\log_{2}a_{3}+\log_{2}a_{4}+\log_{2}a_{5}\)等于()A.5B.10C.15D.20答案:A7.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=\frac{1}{1-a_{n}}\),\(a_{1}=2\),則\(a_{2023}\)的值為()A.2B.\(-1\)C.\(\frac{1}{2}\)D.1答案:A8.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}+a_{7}+a_{13}=3\pi\),則\(\cos(a_{2}+a_{12})\)的值為()A.\(\frac{1}{2}\)B.\(-\frac{1}{2}\)C.\(\frac{\sqrt{3}}{2}\)D.\(-\frac{\sqrt{3}}{2}\)答案:B9.等比數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(S_{3}=1\),\(S_{6}=9\),則\(S_{9}\)等于()A.27B.28C.29D.30答案:B10.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}-9n\),第\(k\)項滿足\(5<a_{k}<8\),則\(k\)的值為()A.6B.7C.8D.9答案:C二、多項選擇題1.下列關于等差數(shù)列的說法中,正確的有()A.若\(a,b,c\)成等差數(shù)列,則\(2b=a+c\)B.若\(a_{n}\)是等差數(shù)列,則\(a_{n}=kn+b\)(\(k,b\)為常數(shù))C.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=An^{2}+Bn\)(\(A,B\)為常數(shù))D.若\(a_{n}\)是等差數(shù)列,\(m,n,p,q\inN^+\),且\(m+n=p+q\),則\(a_{m}+a_{n}=a_{p}+a_{q}\)答案:ABCD2.已知等比數(shù)列\(zhòng)(\{a_{n}\}\)的公比為\(q\),下列說法正確的是()A.若\(a_{1}>0\),\(0<q<1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞減數(shù)列B.若\(a_{1}<0\),\(0<q<1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列C.若\(q>1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列D.若\(q<0\),則數(shù)列\(zhòng)(\{a_{n}\}\)是擺動數(shù)列答案:ABD3.等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(d\),前\(n\)項和為\(S_{n}\),當首項\(a_{1}\)和\(d\)變化時,\(a_{3}+a_{8}+a_{13}\)是一個定值,則下列各數(shù)中為定值的有()A.\(a_{7}\)B.\(a_{8}\)C.\(S_{15}\)D.\(S_{16}\)答案:BC4.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=\frac{a_{n}}{1+a_{n}}\),\(a_{1}=1\),則下列說法正確的是()A.數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式\(a_{n}=\frac{1}{n}\)B.數(shù)列\(zhòng)(\{\frac{1}{a_{n}}\}\)是等差數(shù)列C.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=\frac{n(n+1)}{2}\)D.數(shù)列\(zhòng)(\{a_{n}\}\)是遞減數(shù)列答案:ABD5.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=4\),\(a_{7}=16\),則()A.\(a_{5}=8\)B.\(a_{5}=\pm8\)C.\(a_{1}=2\)D.\(a_{1}=\pm2\)答案:AC6.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}-n\),則()A.\(a_{1}=0\)B.數(shù)列\(zhòng)(\{a_{n}\}\)是等差數(shù)列C.\(a_{n}=2n-2\)D.\(S_{n}\)的最小值為\(-1\)答案:ABC7.設等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),公差為\(d\),若\(S_{5}<S_{6}\),\(S_{6}=S_{7}>S_{8}\),則()A.\(d<0\)B.\(a_{7}=0\)C.\(S_{9}>S_{5}\)D.\(S_{6}\)與\(S_{7}\)均為\(S_{n}\)的最大值答案:ABD8.已知數(shù)列\(zhòng)(\{a_{n}\}\)是等比數(shù)列,\(a_{3}\),\(a_{7}\)是方程\(x^{2}-6x+4=0\)的兩根,則\(a_{5}\)的值為()A.\(\sqrt{6}\)B.\(-\sqrt{6}\)C.2D.\(-2\)答案:C9.對于數(shù)列\(zhòng)(\{a_{n}\}\),定義\(H_{n}=\frac{a_{1}+2a_{2}+\cdots+2^{n-1}a_{n}}{n}\)為\(\{a_{n}\}\)的“優(yōu)值”,已知某數(shù)列\(zhòng)(\{a_{n}\}\)的“優(yōu)值”\(H_{n}=2^{n+1}\),則()A.\(a_{1}=4\)B.數(shù)列\(zhòng)(\{a_{n}\}\)是等差數(shù)列C.\(a_{n}=2n+2\)D.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}+3n\)答案:AC10.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+2}=a_{n+1}-a_{n}\),\(a_{1}=1\),\(a_{2}=2\),則()A.\(a_{2023}=-1\)B.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}\)具有周期性C.\(a_{1}+a_{2}+\cdots+a_{2023}=1\)D.\(a_{6k+1}+a_{6k+2}+\cdots+a_{6k+6}=0\)(\(k\inN\))答案:ABCD三、判斷題1.常數(shù)列一定是等差數(shù)列。()答案:對2.常數(shù)列一定是等比數(shù)列。()答案:錯3.若\(a_{n}=n^{2}\),則數(shù)列\(zhòng)(\{a_{n}\}\)是等差數(shù)列。()答案:錯4.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}<0\),\(q>1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞減數(shù)列。()答案:對5.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}\),\(S_{n}\),\(S_{2n}-S_{n}\),\(S_{3n}-S_{2n}\)仍成等差數(shù)列。()答案:對6.等比數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}\),\(S_{n}\),\(S_{2n}-S_{n}\),\(S_{3n}-S_{2n}\)仍成等比數(shù)列。()答案:錯7.若數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=3n^{2}-2n\),則\(a_{n}=6n-5\)。()答案:對8.若\(a,b,c\)成等比數(shù)列,則\(b^{2}=ac\),反之也成立。()答案:錯9.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{m}=n\),\(a_{n}=m\)(\(m\neqn\)),則\(a_{m+n}=0\)。()答案:對10.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{n}=a_{m}q^{n-m}\)(\(m,n\inN^+\))。()答案:對四、簡答題1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=5\),\(a_{7}=13\),求數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式\(a_{n}\)。答案:設等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(d\)。由\(a_{n}=a_{1}+(n-1)d\),可得\(a_{3}=a_{1}+2d=5\),\(a_{7}=a_{1}+6d=13\)。用\(a_{7}\)的式子減去\(a_{3}\)的式子,即\((a_{1}+6d)-(a_{1}+2d)=13-5\),\(4d=8\),解得\(d=2\)。把\(d=2\)代入\(a_{1}+2d=5\),得\(a_{1}=1\)。所以\(a_{n}=1+(n-1)\times2=2n-1\)。2.已知等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=2\),\(a_{4}=16\),求數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}\)。答案:設等比數(shù)列\(zhòng)(\{a_{n}\}\)的公比為\(q\)。由\(a_{n}=a_{1}q^{n-1}\),可得\(a_{4}=a_{1}q^{3}\),即\(16=2q^{3}\),解得\(q=2\)。等比數(shù)列的前\(n\)項和公式為\(S_{n}=\frac{a_{1}(1-q^{n})}{1-q}\)(\(q\neq1\))。把\(a_{1}=2\),\(q=2\)代入可得\(S_{n}=\frac{2(1-2^{n})}{1-2}=2^{n+1}-2\)。3.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}+n\),求數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式\(a_{n}\)。答案:當\(n=1\)時,\(a_{1}=S_{1}=1^{2}+1=2\);當\(n\geq2\)時,\(a_{n}=S_{n}-S_{n-1}=(n^{2}+n)-[(n-1)^{2}+(n-1)]\),展開得\(a_{n}=n^{2}+n-(n^{2}-2n+1+n-1)=2n\)。當\(n=1\)時,\(a_{1}=2\)也滿足\(a_{n}=2n\)。所以數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式\(a_{n}=2n\)。4.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理評估單的標準化流程
- 護理隨訪對出院患者的影響
- 急診護理領導力與團隊建設
- 護理風險管理與應對策略
- 2025年保險經紀合作協(xié)議書范本
- 多元功能復合制備
- 便秘患者的家庭護理和家庭照顧
- 供應鏈計劃管理平臺
- 基礎設施可視化技術
- 各國經濟體制的創(chuàng)新和調整-20世界初至90年代各時期階段特征及主干知識
- 2025年云南省人民檢察院聘用制書記員招聘(22人)考試筆試模擬試題及答案解析
- 2026年空氣污染監(jiān)測方法培訓課件
- 氣缸蓋平面度的測量
- 腎病綜合征護理診斷與護理措施
- 《好的教育》讀書心得ppt
- 立體構成-塊材課件
- 純化水再驗證方案
- 神泣命令代碼
- 北京林業(yè)大學 研究生 學位考 科技論文寫作 案例-2023修改整理
- 四年級《上下五千年》閱讀測試題及答案
- 江蘇省五高等職業(yè)教育計算機網(wǎng)絡技術專業(yè)指導性人才培養(yǎng)方案
評論
0/150
提交評論