考點解析-人教版9年級數(shù)學上冊【旋轉(zhuǎn)】難點解析試卷_第1頁
考點解析-人教版9年級數(shù)學上冊【旋轉(zhuǎn)】難點解析試卷_第2頁
考點解析-人教版9年級數(shù)學上冊【旋轉(zhuǎn)】難點解析試卷_第3頁
考點解析-人教版9年級數(shù)學上冊【旋轉(zhuǎn)】難點解析試卷_第4頁
考點解析-人教版9年級數(shù)學上冊【旋轉(zhuǎn)】難點解析試卷_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版9年級數(shù)學上冊【旋轉(zhuǎn)】難點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(點D與A,B不重合),連結(jié)CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點F,連接BE.當AD=BF時,∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°2、圖,在中,,將繞頂點順時針旋轉(zhuǎn)到,當首次經(jīng)過頂點時,旋轉(zhuǎn)角(

)A.30° B.40° C.45° D.60°3、如圖,在矩形中,,,是矩形的對稱中心,點、分別在邊、上,連接、,若,則的值為(

)A. B. C. D.4、如圖,平面直角坐標系中,點在第一象限,點在軸的正半軸上,,,將繞點逆時針旋轉(zhuǎn),點的對應點的坐標是(

)A. B. C. D.5、如圖,在正方形ABCD中,將邊BC繞點B逆時針旋轉(zhuǎn)至,連接,,若,,則線段BC的長度為().A.4 B.5 C. D.6、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(

)A. B. C. D.7、如圖,在方格紙中,將繞點按順時針方向旋轉(zhuǎn)90°后得到,則下列四個圖形中正確的是()A. B.C. D.8、如圖,在中,,將繞點逆時針旋轉(zhuǎn)得到,其中點與點是對應點,且點在同一條直線上;則的長為(

)A. B. C. D.9、下列所述圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等腰三角形 B.等邊三角形 C.菱形 D.平行四邊形10、如圖,點O為矩形ABCD的對稱中心,點E從點A出發(fā)沿AB向點B運動,移動到點B停止,延長EO交CD于點F,則四邊形AECF形狀的變化依次為()A.平行四邊形→正方形→平行四邊形→矩形B.平行四邊形→菱形→平行四邊形→矩形C.平行四邊形→正方形→菱形→矩形D.平行四邊形→菱形→正方形→矩形第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、若點與點關(guān)于原點成中心對稱,則_______.2、如圖,將的斜邊AB繞點A順時針旋轉(zhuǎn)得到AE,直角邊AC繞點A逆時針旋轉(zhuǎn)得到AF,連結(jié)EF.若,,且,則_____.3、如圖,在Rt△ABC,∠B=90°,∠ACB=50°.將Rt△ABC在平面內(nèi)繞點A逆時針旋轉(zhuǎn)到△AB′C′的位置,連接CC′.若AB∥CC′,則旋轉(zhuǎn)角的度數(shù)為_____°.4、如圖,在中,,,,為內(nèi)一點,則的最小值為__________.5、如圖,在△ABC中,∠BAC=90°,AB=AC=10cm,點D為△ABC內(nèi)一點,∠BAD=15°,AD=6cm,連接BD,將△ABD繞點A逆時針方向旋轉(zhuǎn),使AB與AC重合,點D的對應點E,連接DE,DE交AC于點F,則CF的長為________cm.6、如圖,在菱形中,,將菱形繞點逆時針方向旋轉(zhuǎn),對應得到菱形,點在上,與交于點,則的長是_____.7、將正方形OEFG放在平面直角坐標系中,O是坐標原點,若點E的坐標為,則點G的坐標為_____.8、如圖,將繞點A逆時針旋轉(zhuǎn)角得到,點B的對應點D恰好落在邊上,若,則旋轉(zhuǎn)角的度數(shù)是______.9、如圖,在Rt△ABC中,∠BAC=90°,AB=AC=4,點D在線段BC上,BD=3,將線段AD繞點A逆時針旋轉(zhuǎn)90°得到線段AE,EF⊥AC,垂足為點F.則AF的長為________.10、將點繞原點O順時針旋轉(zhuǎn)得到點,則點落在第____________象限.三、解答題(6小題,每小題5分,共計30分)1、圖1,圖2都是由邊長為1的小等邊三角形構(gòu)成的網(wǎng)格,每個小等邊三角形的頂點稱為格點,線段的端點均在格點上,分別按要求畫出圖形.(1)在圖1中畫出等腰三角形,且點C在格點上.(畫出一個即可)(2)在圖2中畫出以為邊的菱形,且點D,E均在格點上.2、圖,在每個小正方形的邊長為1個單位的網(wǎng)格中,的頂點均在格點(網(wǎng)格線的交點)上.(1)將向右平移5個單位得到,畫出;(2)將(1)中的繞點C1逆時針旋轉(zhuǎn)得到,畫出.3、已知:如圖,三角形ABM與三角形ACM關(guān)于直線AF成軸對稱,三角形ABE與三角形DCE關(guān)于點E成中心對稱,點E、D、M都在線段AF上,BM的延長線交CF于點P.(1)求證:AC=CD;(2)若∠BAC=2∠MPC,請你判斷∠F與∠MCD的數(shù)量關(guān)系,并說明理由.4、如圖,點在射線上,.如果繞點按逆時針方向旋轉(zhuǎn)到,那么點的位置可以用表示.(1)按上述表示方法,若,,則點的位置可以表示為______;(2)在(1)的條件下,已知點的位置用表示,連接、.求證:.5、如圖,等腰Rt△ABC中,∠A=45°,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉(zhuǎn)90°后,得到△CBE.(1)求∠DCE的度數(shù);(2)若AB=4,CD=3AD,求DE的長.6、如圖,在平面直角坐標系中,△ABC的頂點坐標分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點B關(guān)于原點對稱的點B′的坐標:;(2)平移△ABC,使平移后點A的對應點A1的坐標為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2.-參考答案-一、單選題1、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練運用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準確判定三角形全等,從而利用全等三角形性質(zhì)解決相應的問題.2、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)及旋轉(zhuǎn)的性質(zhì)可知,然后可得,則有,進而問題可求解.【詳解】解:∵四邊形是平行四邊形,,∴,由旋轉(zhuǎn)的性質(zhì)可得,∴,∴;故選B.【考點】本題主要考查平行四邊形的性質(zhì)與旋轉(zhuǎn)的性質(zhì),熟練掌握平行四邊形的性質(zhì)與旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.3、D【解析】【分析】連接AC,BD,過點O作于點,交于點,利用勾股定理求得的長即可解題.【詳解】解:如圖,連接AC,BD,過點O作于點,交于點,四邊形ABCD是矩形,同理可得故選:D.【考點】本題考查中心對稱、矩形的性質(zhì)、勾股定理等知識,學會添加輔助線,構(gòu)造直角三角形是解題關(guān)鍵.4、B【解析】【分析】如圖,作軸于.解直角三角形求出,即可.【詳解】解:如圖,作軸于.由題意:,,,,,,,故選:B.【考點】本題考查坐標與圖形變化——旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題.5、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可知BC=BC'.取點O為線段CC'的中點,并連接BO.根據(jù)等腰三角形三線合一的性質(zhì)、正方形的性質(zhì)及直角三角形的性質(zhì),可證得Rt△OBC≌Rt△C'CD,從而證得OC=C'D,BO=CC',再利用勾股定理即可求解.【詳解】解:如圖,取點O為線段CC'的中點,并連接BO.依題意得,BC=BC'∴BO⊥CC'∴∠BOC=90°在正方形ABCD中,BC=CD,∠BCD=90°∴∠OCB+∠C'CD=90°又∵∠CC'D=90°∴∠C'DC+∠C'CD=90°∴∠OCB=∠C'DC在Rt△OBC和Rt△C'CD中∴Rt△OBC≌Rt△C'CD(AAS)∴OC=C'D=2∴CC'=2OC=2×2=4∴BO=CC'=4在Rt△BOC中BC===故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)及勾股定理的運用等知識,解題的關(guān)鍵是輔助線的添加.6、D【解析】【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷即可.【詳解】解:A、是中心對稱圖形,但不是軸對稱圖形,不符合題意;B、是軸對稱圖像,但不是中心對稱圖形,不符合題意;C、是軸對稱圖形,但不是中心對稱圖形,不符合題意;D、是軸對稱圖形,也是中心對稱圖形,符合題意;故選:D【考點】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合,掌握以上知識是解題的關(guān)鍵.7、B【解析】【分析】根據(jù)繞點按順時針方向旋轉(zhuǎn)90°逐項分析即可.【詳解】A、是由關(guān)于過B點與OB垂直的直線對稱得到,故A選項不符合題意;B、是由繞點按順時針方向旋轉(zhuǎn)90°后得到,故B選項符合題意;C、與對應點發(fā)生了變化,故C選項不符合題意;D、是由繞點按逆時針方向旋轉(zhuǎn)90°后得到,故D選項不符合題意.故選:B.【考點】本題考查旋轉(zhuǎn)變換.解題的關(guān)鍵是弄清旋轉(zhuǎn)的方向和旋轉(zhuǎn)的度數(shù).8、A【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)說明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì)可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=3.故選:A.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì)、勾股定理,在解決旋轉(zhuǎn)問題時,要借助旋轉(zhuǎn)的性質(zhì)找到旋轉(zhuǎn)角和旋轉(zhuǎn)后對應的量.9、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、等腰三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、等邊三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C、菱形既是軸對稱圖形,又是中心對稱圖形,故本選項正確;D、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項錯誤.故選C.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.10、B【解析】【分析】根據(jù)對稱中心的定義,根據(jù)矩形的性質(zhì),可得四邊形AECF形狀的變化情況.【詳解】解:觀察圖形可知,四邊形AECF形狀的變化依次為平行四邊形→菱形→平行四邊形→矩形.故選:B.【考點】考查了中心對稱,矩形的性質(zhì),平行四邊形的判定與性質(zhì),菱形的性質(zhì),根據(jù)EF與AC的位置關(guān)系即可求解.二、填空題1、【解析】【分析】根據(jù)關(guān)于原點對稱的點的特征求出的值,計算即可.【詳解】解:∵點與點關(guān)于原點成中心對稱,∴,,∴,故答案為:.【考點】本題考查了關(guān)于原點對稱,熟知關(guān)于原點對稱的點橫縱坐標均互為相反數(shù)是解題的關(guān)鍵.2、【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得,,由勾股定理可求EF的長.【詳解】解:由旋轉(zhuǎn)的性質(zhì)可得,,,且,,,,故答案為.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,靈活運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.3、100【解析】【分析】由,可得,,由旋轉(zhuǎn)的性質(zhì)可得,,由三角形內(nèi)角和定理得,計算求解即可.【詳解】解:∵∴∴由旋轉(zhuǎn)的性質(zhì)可得∴∴故答案為:100.【考點】本題考查了平行的性質(zhì),旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)角,等邊對等角,三角形的內(nèi)角和定理等知識.解題的關(guān)鍵在于找出旋轉(zhuǎn)角.4、【解析】【分析】將△APB繞點A順時針旋轉(zhuǎn)60°,得到△,連接、,作CN⊥交的延長線于點N,則△≌△APB,由題意可證△是等邊三角形,所以,所以當共線時,最小,求出即可;【詳解】將△APB繞點A順時針旋轉(zhuǎn)60°,得到△,連接、,作CN⊥交的延長線于點N,則△≌△APB,∴∠BAP=∠,∴,,,∴△是等邊三角形,∴,∴,∴當共線時,最小,∴∠CAN=180°-∠,CN⊥AN,∴∠ACN=30°,∴,,∴,∴,∴=;故答案為:.【考點】本題考查了全等三角形判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),以及等邊三角形的性質(zhì)和求線段最值的問題,掌握做輔助線是解題的關(guān)鍵.5、【解析】【分析】過點A作AH⊥DE,垂足為H,由旋轉(zhuǎn)的性質(zhì)可得AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,再根據(jù)等腰直角三角形的性質(zhì)可得∠HAE=45°,AH=3,進而得∠HAF=30°,繼而求出AF長即可求得答案.【詳解】過點A作AH⊥DE,垂足為H,∵∠BAC=90°,AB=AC,將△ABD繞點A逆時針方向旋轉(zhuǎn),使AB與AC重合,點D的對應點E,∴AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,∴DE=,∠HAE=∠DAE=45°,∴AH=DE=3,∠HAF=∠HAE-∠CAE=30°,∴AF=,∴CF=AC-AF=,故答案為.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),勾股定理,解直角三角形等知識,正確添加輔助線構(gòu)建直角三角形、靈活運用相關(guān)知識是解題的關(guān)鍵.6、【解析】【分析】連接交于,由菱形的性質(zhì)得出,,,由直角三角形的性質(zhì)求出,,得出,由旋轉(zhuǎn)的性質(zhì)得:,得出,證出,由直角三角形的性質(zhì)得出,,即可得出結(jié)果.【詳解】解:連接交于,如圖所示:∵四邊形是菱形,∴,,,∴,∴,∴,由旋轉(zhuǎn)的性質(zhì)得:,∴,∵四邊形是菱形,∴,∴,∴∴,∴,,∴;故答案為.【考點】考核知識點:菱形性質(zhì),旋轉(zhuǎn)性質(zhì).解直角三角形是關(guān)鍵.7、或【解析】【分析】先利用正方形的性質(zhì),利用旋轉(zhuǎn)畫出正方形OEFG,從而得到G點的坐標.【詳解】把EO繞E點順時針(或逆時針)旋轉(zhuǎn)90°得到對應點為G(或G′),如圖,則G點的坐標為(2,-3)或G′的坐標為(﹣2,3),【考點】本題考查坐標與圖形的變換,涉及旋轉(zhuǎn)、正方形的性質(zhì)等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.8、【解析】【分析】先求出,由旋轉(zhuǎn)的性質(zhì),得到,,則,即可求出旋轉(zhuǎn)角的度數(shù).【詳解】解:根據(jù)題意,∵,∴,由旋轉(zhuǎn)的性質(zhì),則,,∴,∴;∴旋轉(zhuǎn)角的度數(shù)是50°;故答案為:50°.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),三角形的內(nèi)角和定理,解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)的性質(zhì)進行計算.9、1【解析】【分析】根據(jù)勾股定理先求出BC邊長,再求出DC長,過點D作DM垂直AC,可證,即AF=DM,在等腰直角△DMC中可求DM,即可直接求解.【詳解】解:在Rt△ABC中,∠BAC=90°,AB=AC=4,根據(jù)勾股定理得,AB2+AC2=BC2,∴.又∵BD=3,∴DC=BC?BD=.過點D作DM⊥AC于點M,由旋轉(zhuǎn)的性質(zhì)得∠DAE=90°,AD=AE,∴∠DAC+∠EAF=90°.又∵∠DAC+∠ADM=90°,∴∠ADM=∠EAF.在Rt△ADM和Rt△EAF中,.∴(AAS),∴AF=DM.在等腰Rt△DMC中,由勾股定理得,DM2+MC2=DC2,∴DM=1,∴AF=DM=1.故答案為:1.【考點】本題主要考查等腰直角三角形,旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定與性質(zhì),證明△ADM≌△EAF是解答本題的關(guān)鍵.10、四【解析】【分析】畫出圖形,利用圖象解決問題即可.【詳解】解:如圖,所以在第四象限,故答案為:四.【考點】本題考查坐標與圖形變化—旋轉(zhuǎn),解題的關(guān)鍵是正確畫出圖形,屬于中考常考題型.三、解答題1、(1)見解析(2)見解析【解析】【分析】利用軸對稱圖形、中心對稱圖形的特點畫出符合條件的圖形即可;(1)答案不唯一.(2)【考點】本題考查了軸對稱圖形、中心對稱圖形的特點,熟練掌握特殊三角形與四邊形的性質(zhì)才能準確畫出符合條件的圖形.2、(1)作圖見解析;(2)作圖見解析.【解析】【分析】(1)利用點平移的規(guī)律找出、、,然后描點即可;(2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出點,即可.【詳解】解:(1)如下圖所示,為所求;(2)如下圖所示,為所求;【考點】本題考查了平移作圖和旋轉(zhuǎn)作圖,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.3、見解析【解析】【分析】(1)利用中心對稱圖形的性質(zhì)以及軸對稱圖形的性質(zhì)得出全等三角形進而得出對應線段相等;(2)利用(1)中所求,進而得出對應角相等,進而得出答案.【詳解】(1)證明:∵△ABM與△ACM關(guān)于直線AF成軸對稱,∴△ABM≌△ACM,∴AB=AC,又∵△ABE與△DCE關(guān)于點E成中心對稱,∴△ABE≌△DCE,∴AB=CD,∴AC=CD;(2)∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,∵∠BAC=2∠MPC,∠BMA=∠PMF,∴設∠MPC=α,則∠BAE=∠CAE=∠CDE=α,設∠BMA=β,則∠PMF=∠CMA=β,∴∠F=∠CPM?∠PMF=α?β,∠MCD=∠CDE?∠DMC=α?β,∴∠F=∠MCD.【考點】本題主要考查軸對稱、中心對稱性質(zhì)和全等三角形的判定及性質(zhì).通過軸對稱與中心對稱的性質(zhì)得出全等三角形的判定條件是解題的關(guān)鍵.4、(1)(3,37°)(2)見解析【解析】【分析】(1)根據(jù)點的位置定義,即可得出答案;(2)畫出圖形,證明△AOA′≌△BOA′(SAS),即可由全等三角形的性質(zhì),得出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論