2025年湖北省枝江市中考數(shù)學考前沖刺練習含答案詳解(精練)_第1頁
2025年湖北省枝江市中考數(shù)學考前沖刺練習含答案詳解(精練)_第2頁
2025年湖北省枝江市中考數(shù)學考前沖刺練習含答案詳解(精練)_第3頁
2025年湖北省枝江市中考數(shù)學考前沖刺練習含答案詳解(精練)_第4頁
2025年湖北省枝江市中考數(shù)學考前沖刺練習含答案詳解(精練)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省枝江市中考數(shù)學考前沖刺練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,將一個棱長為3的正方體表面涂上顏色,把它分割成棱長為1的小正方體,將它們全部放入一個不透明盒子中搖勻,隨機取出一個小正方體,有三個面被涂色的概率為()A. B. C. D.2、如圖圖案中,不是中心對稱圖形的是()A. B. C. D.3、如圖,五邊形是⊙O的內接正五邊形,則的度數(shù)為(

)A. B. C. D.4、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個5、如圖,在中,,,,將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,則下列結論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°2、如圖,在中,,,點D,E分別為,上的點,且.將繞點A逆時針旋轉至點B,A,E在同一條直線上,連接,.下列結論正確的是(

)A. B. C. D.旋轉角為3、下列方程一定不是一元二次方程的是(

)A. B.C. D.4、下列命題中不正確的命題有(

)A.方程kx2-x-2=0是一元二次方程 B.x=1與方程x2=1是同解方程C.方程x2=x與方程x=1是同解方程 D.由(x+1)(x-1)=3可得x+1=3或x-1=35、二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論中正確的有()A.4a+b=0B.9a+c>﹣3bC.7a﹣3b+2c>0D.若點A(﹣3,y1)、點B(﹣,y2)、點C(7,y3)在該函數(shù)圖象上,則y1<y3<y2E.若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、已知一個扇形的半徑是1,圓心角是120°,則這個扇形的面積是___________.2、某農科所為了深入踐行“綠水青山就是金山銀山”的理念,大力開展對植物生長的研究,該農科所在相同條件下做某植物種子發(fā)芽率的試驗,得到的結果如下表所示:種子個數(shù)1002003004005006007008009001000…發(fā)芽種子個數(shù)94188281349435531625719812902…發(fā)芽種子頻率(結果保留兩位小數(shù))0.940.940.940.870.870.890.890.900.900.90…根據(jù)頻率的穩(wěn)定性,估計這種植物種子不發(fā)芽的概率是______.3、在一個暗箱里放入除顏色外其它都相同的1個紅球和11個黃球,攪拌均勻后隨機任取一球,取到紅球的概率是_____.4、小亮同學在探究一元二次方程的近似解時,填好了下面的表格:根據(jù)以上信息請你確定方程的一個解的范圍是________.5、已知二次函數(shù),當分別取時,函數(shù)值相等,則當取時,函數(shù)值為______.四、簡答題(2小題,每小題10分,共計20分)1、某化工材料經(jīng)售公司購進了一種化工原料,進貨價格為每千克30元.物價部門規(guī)定其銷售單價不得高于每千克70元,也不得低于30元.市場調查發(fā)現(xiàn):單價每千克70元時日均銷售;單價每千克降低一元,日均多售.在銷售過程中,每天還要支出其他費用500元(天數(shù)不足一天時,按一天計算).(1)如果日均獲利1950元,求銷售單價;(2)銷售單價為多少時,可獲得最大利潤?最大利潤為多少.2、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?五、解答題(4小題,每小題10分,共計40分)1、已知拋物線.(1)該拋物線的對稱軸為;(2)若該拋物線的頂點在x軸上,求拋物線的解析式;(3)設點M(m,),N(2,)在該拋物線上,若>,求m的取值范圍.2、已知P為⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當∠APQ=45°,AP=1,BP=2時,求⊙O的半徑。(2)如圖2,連接AB,交PQ于點M,點N在線段PM上(不與P、M重合),連接ON、OP,設∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關系。3、一個幾何體的三個視圖如圖所示(單位:cm).(1)寫出這個幾何體的名稱:;(2)若其俯視圖為正方形,根據(jù)圖中數(shù)據(jù)計算這個幾何體的表面積.4、為堅持“五育并舉”,落實立德樹人根本任務,教育部出臺了“五項管理”舉措.我校對九年級部分家長就“五項管理”知曉情況作調查,A:完全知曉,B:知曉,C:基本知曉,D:不知曉.九年級組長將調查情況制成了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.請根據(jù)圖中信息,回答下列問題:(1)共調查了多少名家長?寫出圖2中選項所對應的圓心角,并補齊條形統(tǒng)計圖;(2)我校九年級共有450名家長,估計九年級“不知曉五項管理”舉措的家長有多少人;(3)已知選項中男女家長數(shù)相同,若從選項家長中隨機抽取2名家長參加“家校共育”座談會,請用列表或畫樹狀圖的方法,求抽取家長都是男家長的概率.-參考答案-一、單選題1、B【分析】直接根據(jù)題意得出恰有三個面被涂色的有8個,再利用概率公式求出答案.【詳解】解:由題意可得:小立方體一共有27個,恰有三個面被涂色的為棱長為3的正方體頂點處的8個小正方體;故取得的小正方體恰有三個面被涂色.的概率為.故選:B.【點睛】此題主要考查了概率公式的應用,正確得出三個面被涂色.小立方體的個數(shù)是解題關鍵.2、C【分析】根據(jù)中心對稱圖形的概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心求解.【詳解】解:A、是中心對稱圖形,故A選項不合題意;B、是中心對稱圖形,故B選項不合題意;C、不是中心對稱圖形,故C選項符合題意;D、是中心對稱圖形,故D選項不合題意;故選:C.【點睛】本題考查了中心對稱圖形的知識,解題的關鍵是掌握中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180°后重合.3、D【解析】【分析】先根據(jù)正五邊形的內角和求出每個內角,再根據(jù)等邊對等角得出∠ABE=∠AEB,然后利用三角形內角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點】本題考查圓內接正五邊形的性質,等腰三角形性質,三角形內角和公式,角的和差計算,掌握圓內接正五邊形的性質,等腰三角形性質,三角形內角和公式,角的和差計算是解題關鍵.4、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.5、C【分析】過點A作AC⊥x軸于點C,設,則,根據(jù)勾股定理,可得,從而得到,進而得到∴,可得到點,再根據(jù)旋轉的性質,即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設,則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉90°,則旋轉后點A的對應點的坐標是,∴將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉,解直角三角形等知識,解題的關鍵是求出點A的坐標,屬于中考??碱}型.二、多選題1、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項B成立;∴AB=2BC,故選項C成立;∴∠A=∠C,∴DA=DC,故選項A成立;綜上所述,故選項ABCD均成立,故選:ABCD.【考點】本題考查了圓的有關性質的綜合應用,在本題中借用切線的性質,求得相應角的度數(shù)是解題的關鍵.2、ABC【解析】【分析】由AB=AC,∠B=30°,得出∠B=∠C=30°,∠BAC=120°,得出將△ADE繞點A逆時針旋轉至點B、A、E在同一條直線上,可得旋轉角為60°,故D錯誤;由DE∥BC,易證AD=AE,得出BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;證明∠DAC=∠EAC,由AD=AE,得出DE⊥AC,故A正確;即可得出結果.【詳解】解:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴將△ADE繞點A逆時針旋轉至點B、A、E在同一條直線上,則旋轉角為:180°120°=60°,故D錯誤;∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;∵∠BAC=∠DAE=120°,∴∠EAC=180°-∠BAC=180°-120°=60°,∠DAC=120°-∠EAC=120°-60°=60°,∴∠DAC=∠EAC,∵AD=AE,∴DE⊥AC,故A正確;故選:ABC.【考點】本題考查了旋轉的性質、等腰三角形的判定與性質、平行線的性質等知識;熟練掌握旋轉的性質與等腰三角形的性質是解題的關鍵.3、AB【解析】【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程進行分析即可.【詳解】解:A、分母含有未知數(shù),一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數(shù),一定不是一元二次方程,故本選項符合題意;C、當a=0時,不是一元二次方程,當a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點】本題考查的是一元二次方程的定義,熟知只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程是解答此題的關鍵.4、ABCD【解析】【分析】根據(jù)方程、方程的解的有關定義以及解方程等知識點逐項判斷即可.【詳解】解:A.方程kx2?x?2=0當k≠0時才是一元二次方程,故錯誤;B.x=1與方程x2=1不是同解方程,故錯誤;C.方程x2=x與方程x=1不是同解方程,故錯誤;D.由(x+1)(x?1)=3可得x=±2,故錯誤.故選:ABCD.【考點】本題主要考查了一元二次方程的定義、解一元二次方程、同解方程等知識點,掌握解一元二次方程的方法是解答本題的關鍵.5、ABE【解析】【分析】根據(jù)拋物線的對稱軸為直線x=2,則有4a+b=0,可得A正確;根據(jù)二次函數(shù)的對稱性得到當x=3時,函數(shù)值大于0,則9a+3b+c>0,即9a+c>﹣3b,可得B正確;由于x=﹣1時,y=0,則a﹣b+c=0,易得c=﹣5a,所以7a-3b+2c=9a,再根據(jù)拋物線開口向下得a<0,于是有7a﹣3b+2c<0,可得C錯誤;利用拋物線的對稱性得到(﹣3,)在拋物線上,然后利用二次函數(shù)的增減性可得D錯誤;作出直線y=﹣3,然后依據(jù)函數(shù)圖象進行判斷可得E正確;綜上即可得答案.【詳解】A項:∵x==2,∴4a+b=0,故A正確.B項:∵拋物線與x軸的一個交點為(-1,0),對稱軸為直線x=2,∴另一個交點為(5,0),∵拋物線開口向下,∴當x=3時,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故B正確.C項:∵拋物線與x軸的一個交點為(﹣1,0),∴a﹣b+c=0∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵拋物線開口向下,∴a<0,∴7a﹣3b+2c<0,故C錯誤;D項:∵拋物線的對稱軸為x=2,C(7,)在拋物線上,∴點(﹣3,)與C(7,)關于對稱軸x=2對稱,∵A(﹣3,)在拋物線上,∴=,∵﹣3<﹣12,在對稱軸的左側,拋物線開口向下,∴y隨x的增大而增大,∴=<,故D錯誤.E項:方程a(x+1)(x﹣5)=0的兩根為x=﹣1或x=5,過y=﹣3作x軸的平行線,直線y=﹣3與拋物線的交點的橫坐標為方程的兩根,∵<,拋物線與x軸交點為(-1,0),(5,0),∴依據(jù)函數(shù)圖象可知:<﹣1<5<,故E正確.故答案為:ABE【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.三、填空題1、【分析】根據(jù)圓心角為的扇形面積是進行解答即可得.【詳解】解:這個扇形的面積.故答案是:.【點睛】本題考查了扇形的面積,解題的關鍵是掌握扇形的面積公式.2、0.1【分析】大量重復試驗下“發(fā)芽種子”的頻率可以估計“發(fā)芽種子”的概率,據(jù)此求解.【詳解】觀察表格發(fā)現(xiàn)隨著實驗次數(shù)的增多頻率逐漸穩(wěn)定在0.9附近,故“發(fā)芽種子”的概率估計值為0.9.∴這種植物種子不發(fā)芽的概率是0.1.故答案為:0.1.【點睛】本題考查了利用頻率估計概率的知識,解題的關鍵是了解大量重復試驗中某個事件發(fā)生的頻率能估計概率.3、【分析】由題意可知,共有12個球,取到每個球的機會均等,根據(jù)概率公式解題.【詳解】解:P(紅球)=故答案為:【點睛】本題考查簡單事件的概率,是基礎考點,掌握相關知識是解題關鍵.4、【解析】【分析】觀察表格可知,隨x的值逐漸增大,ax2+bx+c的值在3.24~3.25之間由負到正,故可判斷ax2+bx+c=0時,對應的x的值在3.24<x<3.25之間.【詳解】根據(jù)表格可知,ax2+bx+c=0時,對應的x的值在3.24<x<3.25之間.故答案為3.24<x<3.25.【考點】本題考查了一元二次方程的知識點,解題的關鍵是根據(jù)表格求出一元二次方程的近似根.5、2020【解析】【分析】根據(jù)二次函數(shù)y=2x2+2020,當x分別取x1,x2(x1≠x2)時,函數(shù)值相等,可以得到x1和x2的關系,從而可以得到2x1+2x2的值,進而可以求得當x取2x1+2x2時,函數(shù)的值.【詳解】解:∵二次函數(shù)y=2x2+2020,當x分別取x1,x2(x1≠x2)時,函數(shù)值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴當x=2x1+2x2時,y=2×0+2020=0+2020=2020,故答案為:2020.【考點】本題考查二次函數(shù)的性質、二次函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,利用二次函數(shù)的性質解答.四、簡答題1、(1)65;(2)當單價為65時,日獲利最大,最大利潤為1950元.【解析】【分析】(1)若銷售單價為x元,則每千克降低(70-x)元,日均多銷售出2(70-x)千克,日均銷售量為[60+2(70-x)]千克,每千克獲利(x-30)元,根據(jù)題意可得等量關系:每千克利潤×銷售量-500元=總利潤,根據(jù)等量關系列出方程即可;(2)運用配方法配成頂點式,得頂點坐標,結合x的取值范圍即可求得結論.【詳解】解:(1)設銷售單價為x元,由題意得:(x-30)[60+2(70-x)]-500=1950,解得:x1=x2=65,∵銷售單價不得高于每千克70元,也不得低于每千克30元,∴x=65符合題意,答:銷售單價為65元時,日均獲利為1950元;(2)設銷售單價為x元,可獲得利潤為y,由題意得:y=(x-30)[60+2(70-x)]-500=-2x2+260x-6500(30≤x≤70),∴y=-2x2+260x-6500可化為y=-2(x-65)2+1950的形式,∴頂點坐標為(65,1950),∵30<65<70,當單價定為65元時,日均獲利最大,最大利潤為1950元.【考點】此題主要考查了一元二次方程的應用,二次函數(shù)的應用,關鍵是根據(jù)題意表示出日均銷售量,以及每千克的利潤.2、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當時,四邊形PQCD為平行四邊形;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運動的時間為秒.∵t=9>8,∴t=9(舍去),∴當t=2秒時,PQ與⊙O相切.【考點】本題主要考查了切線長定理,矩形的性質與判定,勾股定理,平行四邊形的性質等等,解題的關鍵在于能夠熟練掌握切線長定理.五、解答題1、(1)直線x=-1;(2)或;(3)當a>0時,m<-4或m>2;當a<0時,-4<m<2.【解析】【分析】(1)利用二次函數(shù)的對稱軸公式即可求得.(2)根據(jù)題意可知頂點坐標,再利用待定系數(shù)法即可求出二次函數(shù)解析式.(3)分類討論當a>0時和a<0時二次函數(shù)的性質,即可求出m的取值范圍.【詳解】(1)利用二次函數(shù)的對稱軸公式可知對稱軸.故答案為:.(2)∵拋物線頂點在x軸上,對稱軸為,∴頂點坐標為(-1,0).將頂點坐標代入二次函數(shù)解析式得:,整理得:,解得:.∴拋物線解析式為或.(3)∵拋物線的對稱軸為直線x=-1,∴N(2,y2)關于直線x=-1的對稱點為(-4,y2).根據(jù)二次函數(shù)的性質分類討論.(ⅰ)當a>0時,拋物線開口向上,若y1>y2,即點M在點N或的上方,則m<-4或m>2;(ⅱ)當a<0時,拋物線開口向下,若y1>y2,即點M在點N或的上方,則-4<m<2.【考點】本題為二次函數(shù)綜合題,掌握二次函數(shù)的性質是解答本題的關鍵.2、(1);(2)α+2β=90°,見解析【解析】【分析】(1)連接AB,由已知得到∠APB=∠APQ+BPQ=90°,根據(jù)圓周角定理證得AB是⊙O的直徑,然后根據(jù)勾股定理求得直徑,即可求得半徑;(2)連接OA、OB、OQ,由證得∠APQ=∠BPQ,即可證得OQ⊥ON,然后根據(jù)三角形內角和定理證得2∠OPN+∠PON+∠NOQ=180°,,即可證得α+2β=90°.【詳解】(1)連接AB,∵∠APQ=∠BPQ=45°,∴∠APB=∠APQ+BPQ=90°,∴AB是⊙O的直徑,∴AB=,∴⊙O的半徑為;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論