版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
人教版9年級數(shù)學上冊《圓》定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,一個油桶靠在直立的墻邊,量得并且則這個油桶的底面半徑是()A. B. C. D.2、如圖,已知長方形中,,圓B的半徑為1,圓A與圓B內(nèi)切,則點與圓A的位置關系是(
)A.點C在圓A外,點D在圓A內(nèi) B.點C在圓A外,點D在圓A外C.點C在圓A上,點D在圓A內(nèi) D.點C在圓A內(nèi),點D在圓A外3、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點,連接OE并延長,交⊙O于點D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°4、如圖,正三角形PMN的頂點分別是正六邊形ABCDEF三邊的中點,則三角形PMN與六邊形ABCDEF的面積之比()A.1:2 B.1:3 C.2:3 D.3:85、如圖,是的弦,點在過點的切線上,,交于點.若,則的度數(shù)等于(
)A. B. C. D.6、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關系是(
)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能7、下列說法:(1)長度相等的弧是等??;(2)弦不包括直徑;(3)劣弧一定比優(yōu)弧短;(4)直徑是圓中最長的弦.其中正確的有(
)A.1個 B.2個 C.3個 D.4個8、如圖,正方形的邊長為4,以點為圓心,為半徑畫圓弧得到扇形(陰影部分,點在對角線上).若扇形正好是一個圓錐的側(cè)面展開圖,則該圓錐的底面圓的半徑是(
)A. B.1 C. D.9、如圖,AB是半圓的直徑,點D是弧AC的中點,∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°10、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個輪子的半徑長為()A.m B.m C.5m D.m第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、下列說法①直徑是弦;②圓心相同,半徑相同的兩個圓是同心圓;③兩個半圓是等?。虎芙?jīng)過圓內(nèi)一定點可以作無數(shù)條直徑.正確的是______填序號.2、如圖,在平面直角坐標系中,點A的坐標是(20,0),點B的坐標是(16,0),點C、D在以OA為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點C的坐標為_____.3、如圖,AB是⊙O的直徑,C是⊙O上的點,過點C作⊙O的切線交AB的延長線于點D.若∠A=32°,則∠D=_____度.4、如圖,是的內(nèi)接正三角形,點是圓心,點,分別在邊,上,若,則的度數(shù)是____度.5、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.6、如圖,邊長相等的正五邊形和正六邊形拼接在一起,則∠ABC的度數(shù)為________.7、如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.8、如圖,在矩形中,是邊上一點,連接,將矩形沿翻折,使點落在邊上點處,連接.在上取點,以點為圓心,長為半徑作⊙與相切于點.若,,給出下列結(jié)論:①是的中點;②⊙的半徑是2;③;④.其中正確的是________.(填序號)9、如圖,已知是的直徑,是的切線,連接交于點,連接.若,則的度數(shù)是_________.10、如圖,在中,∠ABC=90°,∠A=58°,AC=18,點D為邊AC的中點.以點B為圓心,BD為半徑畫圓弧,交邊BC于點E,則圖中陰影部分圖形的面積為______.a(chǎn)三、解答題(5小題,每小題6分,共計30分)1、如圖,,點在上,且,以為圓心,為半徑作圓.(1)討論射線與公共點個數(shù),并寫出對應的取值范圍;(2)若是上一點,,當時,求線段與的公共點個數(shù).2、如圖,在中,.(1)請作出經(jīng)過A、B兩點的圓,且該圓的圓心O落在線段AC上(尺規(guī)作圖,保留作圖痕跡,不寫做法);(2)在(1)的條件下,已知,將線段AB繞點A逆時針旋轉(zhuǎn)后與⊙O交于點E.試證明:B、C、E三點共線.3、如圖,已知在⊙O中,直徑MN=10,正方形ABCD的四個頂點分別在⊙O及半徑OM、OP上,并且∠POM=45°,求正方形的邊長.4、在平面直角坐標系中,平行四邊形的頂點A,D的坐標分別是,其中.(1)若點B在x軸的上方,①,求的長;②,且.證明:四邊形是菱形;(2)拋物線經(jīng)過點B,C.對于任意的,當a,m的值變化時,拋物線會不同,記其中任意兩條拋物線的頂點為(與不重合),則命題“對所有的a,b,當時,一定不存在的情形.”是否正確?請說明理由.5、如圖,OC為⊙O的半徑,弦AB⊥OC于點D,OC=10,CD=4,求AB的長.-參考答案-一、單選題1、C【解析】【分析】根據(jù)切線的性質(zhì),連接過切點的半徑,構(gòu)造正方形求解即可.【詳解】如圖所示:設油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點】考查了切線的性質(zhì)和正方形的判定、性質(zhì),解題關鍵是理解和掌握切線的性質(zhì).2、C【解析】【分析】根據(jù)內(nèi)切得出圓A的半徑,再判斷點D、點E到圓心的距離即可【詳解】∵圓A與圓B內(nèi)切,,圓B的半徑為1∴圓A的半徑為5∵<5∴點D在圓A內(nèi)在Rt△ABC中,∴點C在圓A上故選:C【考點】本題考查點與圓的位置關系、圓與圓的位置關系、勾股定理,熟練掌握點與圓的位置關系是關鍵3、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識.正確理解題意是解題的關鍵.4、D【解析】【分析】連接BE,設正六邊形的邊長為a,首先證明△PMN是等邊三角形,分別求出△PMN,正六邊形ABCDEF的面積即可.【詳解】解:連接BE,設正六邊形的邊長為a.則AF=a,BE=2a,AF∥BE,∵AP=PB,F(xiàn)N=NE,∴PN=(AF+BE)=1.5a,同理可得PM=MN=1.5a,∴PN=PM=MN,∴△PMN是等邊三角形,∴,故選:D.【考點】本題考查正多邊形與圓,等邊三角形的判定和性質(zhì)等知識,解題的關鍵是學會利用參數(shù)解決問題,屬于中考??碱}型.5、B【解析】【分析】根據(jù)題意可求出∠APO、∠A的度數(shù),進一步可得∠ABO度數(shù),從而推出答案.【詳解】∵,∴∠APO=70°,∵,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵點C在過點B的切線上,∴∠OBC=90°,∴∠ABC=∠OBC?∠ABO=90°?20°=70°,故答案為:B.【考點】本題考查的是圓切線的運用,熟練掌握運算方法是關鍵.6、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關系是:點A在⊙O內(nèi).故選A.7、A【解析】【分析】根據(jù)等弧的定義、弦的定義、弧的定義、分別判斷后即可確定正確的選項.【詳解】解:(1)長度相等的弧不一定是等弧,弧的度數(shù)必須相同,故錯誤;(2)直徑是圓中最長的弦,故(2)錯誤,(4)正確;(3)同圓或等圓中劣弧一定比優(yōu)弧短,故錯誤;正確的只有一個,故選:A.【考點】本題考查了圓的有關定義,能夠了解圓的有關知識是解答本題的關鍵,難度不大.8、D【解析】【分析】根據(jù)題意,扇形ADE中弧DE的長即為圓錐底面圓的周長,即通過計算弧DE的長,再結(jié)合圓的周長公式進行計算即可得解.【詳解】∵正方形的邊長為4∴∵是正方形的對角線∴∴∴圓錐底面周長為,解得∴該圓錐的底面圓的半徑是,故選:D.【考點】本題主要考查了扇形的弧長公式,圓的周長公式,正方形的性質(zhì)以及圓錐的相關知識點,熟練掌握弧長公式及圓的周長公式是解決本題的關鍵.9、C【解析】【分析】連接AC,然后根據(jù)圓內(nèi)接四邊形的性質(zhì),可以得到∠ADC的度數(shù),再根據(jù)點D是弧AC的中點,可以得到∠DCA的度數(shù),直徑所對的圓周角是90°,從而可以求得∠BCD的度數(shù).【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內(nèi)接四邊形,∴∠ADC=130°,∵點D是弧AC的中點,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點】本題考查圓周角定理、圓心角、弧、弦的關系,解答本題的關鍵是明確題意,利用數(shù)形結(jié)合的思想解答.10、D【解析】【分析】連接OB,由垂徑定理得出BD的長;連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據(jù)勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個輪子的半徑長為m,故選:D.【考點】本題主要考查垂徑定理的應用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關鍵.二、填空題1、①【解析】【分析】利用圓的有關定義及性質(zhì)分別判斷后即可確定正確的選項.【詳解】解:直徑是弦,但弦不是直徑,故①正確;圓心相同但半徑不同的兩個圓是同心圓,故②錯誤;若兩個半圓的半徑不等,則這兩個半圓的弧長不相等,故③錯誤;經(jīng)過圓的圓心可以作無數(shù)條的直徑,故④錯誤.綜上,正確的只有①.故答案為:①【考點】本題考查了圓的知識,了解有關圓的定義及性質(zhì)是解答本題的關鍵,難度不大.2、(2,6)【解析】【分析】此題涉及的知識點是平面直角坐標系圖像性質(zhì)的綜合應用.過點M作MF⊥CD于F,過C作CE⊥OA于E,在Rt△CMF中,根據(jù)勾股定理即可求得MF與EM,進而就可求得OE,CE的長,從而求得C的坐標.【詳解】∵四邊形OCDB是平行四邊形,點B的坐標為(16,0),CD∥OA,CD=OB=16,過點M作MF⊥CD于F,則過C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM?ME=OM?CF=10?8=2,連接MC,∴在Rt△CMF中,∴點C的坐標為(2,6).故答案為(2,6).【考點】此題重點考察學生對坐標與圖形性質(zhì)的實際應用,勾股定理,注意數(shù)形結(jié)合思想在解題的關鍵.3、26【解析】【詳解】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案為26.點睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.4、120【解析】【分析】本題可通過構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因為等邊三角形ABC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因為OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進行轉(zhuǎn)化,構(gòu)造輔助線是本題難點,全等以及垂徑定理的應用在圓綜合題目極為常見,圓心角、弧、圓周角的關系需熟練掌握.5、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點】本題主要考查圓周角的性質(zhì),解決本題的關鍵是要熟練掌握圓周角的性質(zhì).6、24°【解析】【分析】根據(jù)正五邊形的內(nèi)角和和正六邊形的內(nèi)角和公式求得正五邊形的每個內(nèi)角為108°和正六邊形的每個內(nèi)角為120°,然后根據(jù)周角的定義和等腰三角形性質(zhì)可得結(jié)論.【詳解】解:由題意得:正六邊形的每個內(nèi)角都等于120°,正五邊形的每個內(nèi)角都等于108°∴∠BAC=360°-120°-108°=132°∵AB=AC∴∠ACB=∠ABC=故答案是:.【考點】考查了正多邊形的內(nèi)角與外角、等腰三角形的性質(zhì),熟練掌握正五邊形的內(nèi)角和正六邊形的內(nèi)角求法是解題的關鍵.7、48°【解析】【分析】連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點睛:本題考查的是正多邊形與圓的有關計算,掌握正多邊形的中心角的計算公式是解題的關鍵.8、①②④.【解析】【詳解】解:①∵AF是AB翻折而來,∴AF=AB=6.∵AD=BC=,∴DF==3,∴F是CD中點;∴①正確;②連接OP,∵⊙O與AD相切于點P,∴OP⊥AD.∵AD⊥DC,∴OP∥CD,∴,設OP=OF=x,則,解得:x=2,∴②正確;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF.∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③錯誤;④連接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊△.同理△OPG為等邊△,∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG==,∴④正確;故答案為①②④.9、25【解析】【分析】先由切線的性質(zhì)可得∠OAC=90°,再根據(jù)三角形的內(nèi)角和定理可求出∠AOD=50°,最后根據(jù)“同弧所對的圓周角等于圓心角的一半”即可求出∠B的度數(shù).【詳解】解:∵是的切線,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案為:25.【考點】本題考查了切線的性質(zhì)和圓周角定理,掌握圓周角定理是解題的關鍵.10、【解析】【分析】先根據(jù)直角三角形斜邊上的中線性質(zhì)得到BD=CD=9,則∠DBC=∠C=22°,然后根據(jù)扇形的面積公式計算.【詳解】解:∵∠ABC=90°,點D為邊AC的中點,∴BD=CD=AC=9,∴∠DBC=∠C,∵∠C=90°-∠A=90°-58°=32°,∴∠DBE=32°,∴圖中陰影部分圖形的面積=.故答案為:π.【考點】本題考查了扇形面積的計算:設圓心角是n°,圓的半徑為R的扇形面積為S,則S扇形=或S扇形=lR(其中l(wèi)為扇形的弧長).也考查了直角三角形斜邊上的中線性質(zhì).三、解答題1、(1)見解析
(2)0個【解析】【分析】(1)作于點,由,可得點到射線的距離,根據(jù)直線與圓的位置關系的定義即可判斷射線OA與圓M的公共點個數(shù);(2)連接.可得,由可得,得到,故當時,可判斷線段與的公共點個數(shù).【詳解】(1)如圖,作于點.,∴點到射線的距離.∴當時,與射線只有一個公共點;當時,與射線沒有公共點;當時,與射線有兩個公共點;當時,與射線只有一個公共點.(2)如圖,連接..,.∴當時,線段與的公共點個數(shù)為0.【考點】本題主要考查了直線與圓的位置關系,根據(jù)圓心到直線的距離判斷位置關系是解題的關鍵.2、(1)見解析(2)見解析【解析】【分析】(1)只需要作AB的垂直平分線,其與AC的交點即為圓心O,由此作圖即可;(2)先由圓周角定理求出,再由旋轉(zhuǎn)的性質(zhì)求出,從而得到,證明△OBC≌△OEC得到∠OCE=∠OCB=90°,則∠OCB+∠OCE=180°,即可證明B、C、E三點共線.(1)解:如圖所示,圓O即為所求;(2)解:如圖所示,連接CE,OE,∵,∴,由旋轉(zhuǎn)的性質(zhì)可知,∴,∴,在△OBC和△OEC中,,∴△OBC≌△OEC(SAS),∴∠OCE=∠OCB=90°,∴∠OCB+∠OCE=180°,∴B、C、E三點共線.【考點】本題主要考查了線段垂直平分線的尺規(guī)作圖,畫圓,圓周角定理,旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定等等,熟知性格知識是解題的關鍵.3、【解析】【分析】證出△DCO是等腰直角三角形,得出DC=CO,求出BO=2AB,連接AO,半徑AO=5,再根據(jù)勾股定理列方程,即可求出AB的長.【詳解】解:∵四邊形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD,∴∠DCO=90°,又∵∠POM=45°,∴∠CDO=45°,∴CD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年合理使用抗生素培訓試題及答案
- 重慶市安全員B證考試題庫試題全考點模擬卷(含參考答案)
- 車間安全生產(chǎn)隱患排查及整改記錄
- 機械安全設計標準及風險識別
- 小微企業(yè)安全管理體系評審標準解讀
- 特種設備安全檢查報告表范本
- 2025年勞動防護及職業(yè)健康培訓測試卷及答案
- 兒童課外活動組織與安全管理指導
- 企業(yè)培訓效果評估與反饋互動方案
- 建筑施工安全檢查項目清單及標準
- 單杠引體向上教學課件
- 高級消防設施操作員試題及答案-1
- 2025年海南省政府采購評審專家考試題庫(含答案)
- 綿陽普通話考試題目含答案
- 國企財務審批管理辦法
- 新型農(nóng)業(yè)經(jīng)營主體法律制度完善研究
- 高中國際班數(shù)學試卷
- 北京市2019-2024年中考滿分作文131篇
- 2024-2025學年湖北省武漢市常青聯(lián)合體高二上學期期末考試語文試題(解析版)
- xx中學十五五發(fā)展規(guī)劃(2025-2030)
- 快遞保證金合同協(xié)議
評論
0/150
提交評論