考點(diǎn)攻克人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題攻克試卷(含答案詳解)_第1頁
考點(diǎn)攻克人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題攻克試卷(含答案詳解)_第2頁
考點(diǎn)攻克人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題攻克試卷(含答案詳解)_第3頁
考點(diǎn)攻克人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題攻克試卷(含答案詳解)_第4頁
考點(diǎn)攻克人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題攻克試卷(含答案詳解)_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專題攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)到點(diǎn)D落在AB邊上,此時(shí)得到△EDC,斜邊DE交AC邊于點(diǎn)F,則圖中陰影部分的面積為(

)A.3 B.1 C. D.2、在平面直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是(

)A. B. C. D.3、如圖,△OAB中,∠AOB=60°,OA=4,點(diǎn)B的坐標(biāo)為(6,0),將△OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△CAD,當(dāng)點(diǎn)O的對應(yīng)點(diǎn)C落在OB上時(shí),點(diǎn)D的坐標(biāo)為(

)A.(7,3) B.(7,5) C.(5,5) D.(5,3)4、將繞點(diǎn)旋轉(zhuǎn)得到,則下列作圖正確的是()A. B. C. D.5、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(diǎn)(點(diǎn)D與A,B不重合),連結(jié)CD,將線段CD繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點(diǎn)F,連接BE.當(dāng)AD=BF時(shí),∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°6、如圖,由個小正方形組成的田字格,的頂點(diǎn)都是小正方形的頂點(diǎn),在田字格上能畫出與成軸對稱,且頂點(diǎn)都在小正方形頂點(diǎn)上的三角形的個數(shù)共有()A.2個 B.3個 C.4個 D.5個7、如圖,與關(guān)于成中心對稱,不一定成立的結(jié)論是(

)A. B.C. D.8、如圖,矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)得到矩形AB'C′D',此時(shí)點(diǎn)B′恰好在DC邊上,若∠B'BC=15°,則α的大小為()A.15° B.25° C.30° D.45°9、如圖,在方格紙上建立的平面直角坐標(biāo)系中,將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90°,得到,則點(diǎn)的坐標(biāo)為(

).A. B.C. D.10、小明把一副三角板按如圖所示疊放在一起,固定三角板ABC,將另一塊三角板DEF繞公共頂點(diǎn)B順時(shí)針旋轉(zhuǎn)(旋轉(zhuǎn)角度不超過180°).若兩塊三角板有一邊平行,則三角板DEF旋轉(zhuǎn)的度數(shù)可能是(

)A.15°或45° B.15°或45°或90°C.45°或90°或135° D.15°或45°或90°或135°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在△ABC中,∠CAB=45°,若∠CAB'=25°,則旋轉(zhuǎn)角的度數(shù)為_____.2、如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點(diǎn)按順時(shí)針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點(diǎn)P的坐標(biāo)為____________________.3、如圖,正方形ABCD的邊長為6,點(diǎn)E在邊CD上.以點(diǎn)A為中心,把△ADE順時(shí)針旋轉(zhuǎn)90°至△ABF的位置.若DE=2,則FE=___.4、如圖,在中,,,,將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)得到,連接,,直線,相交于點(diǎn),連接,在旋轉(zhuǎn)過程中,線段的最大值為__________.5、在平面直角坐標(biāo)系中,點(diǎn)(﹣3,2)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是____________.6、問題背景:如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到,與交于點(diǎn),可推出結(jié)論:問題解決:如圖,在中,,,.點(diǎn)是內(nèi)一點(diǎn),則點(diǎn)到三個頂點(diǎn)的距離和的最小值是___________7、如圖,已知點(diǎn)的坐標(biāo)是,,點(diǎn)的坐標(biāo)是,,菱形的對角線交于坐標(biāo)原點(diǎn),則點(diǎn)的坐標(biāo)是______.8、鎮(zhèn)江市旅游局為了亮化某景點(diǎn),在兩條筆直且互相平行的景觀道MN、QP上分別放置A、B兩盞激光燈,如圖所示.A燈發(fā)出的光束自AM逆時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn);B燈發(fā)出的光束自BP逆時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不間斷照射,A燈每秒轉(zhuǎn)動12°,B燈每秒轉(zhuǎn)動4°.B燈先轉(zhuǎn)動12秒,A燈才開始轉(zhuǎn)動.當(dāng)B燈光束第一次到達(dá)BQ之前,兩燈的光束互相平行時(shí)A燈旋轉(zhuǎn)的時(shí)間是.9、如圖,菱形ABCD的邊長為2,∠A=60°,E是邊AB的中點(diǎn),F(xiàn)是邊AD上的一個動點(diǎn),將線段EF繞著點(diǎn)E順時(shí)針旋轉(zhuǎn)60°得到EG,連接DG、CG,則DG+CG的最小值為_____.10、如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段,那么的對應(yīng)點(diǎn)的坐標(biāo)是__________.三、解答題(6小題,每小題5分,共計(jì)30分)1、如圖,在等腰三角形ABC中,AB=BC.將繞頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)到的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1,BC1分別交于點(diǎn)E,F(xiàn).(1)求證:△BCF≌△BA1D;(2)當(dāng)時(shí),判定四邊形A1BCE的形狀并說明理由.2、已知和都是等腰直角三角形,.(1)如圖1,連接,,求證:;(2)將繞點(diǎn)O順時(shí)針旋轉(zhuǎn).①如圖2,當(dāng)點(diǎn)M恰好在邊上時(shí),求證:;②當(dāng)點(diǎn)A,M,N在同一條直線上時(shí),若,,請直接寫出線段的長.3、如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的,連接BE,CF相交于點(diǎn)D,(1)求證:BE=CF;(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長.4、在RtABC中,∠ABC=90°,∠A=α,O為AC的中點(diǎn),將點(diǎn)O沿BC翻折得到點(diǎn),將ABC繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)B與C重合,旋轉(zhuǎn)后得到ECF.(1)如圖1,旋轉(zhuǎn)角為.(用含α的式子表示)(2)如圖2,連BE,BF,點(diǎn)M為BE的中點(diǎn),連接OM,①∠BFC的度數(shù)為.(用含α的式子表示)②試探究OM與BF之間的關(guān)系.(3)如圖3,若α=30°,請直接寫出的值為.5、如圖,△AOB中,OA=OB=6,將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到△COD.OC與AB交于點(diǎn)G,CD分別交OB、AB于點(diǎn)E、F.(1)∠A與∠D的數(shù)量關(guān)系是:∠A______∠D;(2)求證:△AOG≌△DOE;(3)當(dāng)A,O,D三點(diǎn)共線時(shí),恰好OB⊥CD,求此時(shí)CD的長.6、如圖,點(diǎn)A(a,0),B(0,b),且a、b滿足(a﹣2)2+|4b﹣8|=0.(1)如圖1,求a,b的值;(2)如圖2,點(diǎn)C在線段AB上(不與A、B重合)移動,AB⊥BD,且∠COD=45°,猜想線段AC、BD、CD之間的數(shù)量關(guān)系并證明你的結(jié)論;(3)如圖3,若P為x軸正半軸上異于原點(diǎn)O和點(diǎn)A的一個動點(diǎn),連接PB,將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°至PE,直線AE交y軸于點(diǎn)Q,當(dāng)P點(diǎn)在x軸上移動時(shí),線段BE和線段BQ中哪一條線段長為定值,并求出該定值.-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意及旋轉(zhuǎn)的性質(zhì)可得是等邊三角形,則,,根據(jù)含30度角的直角三角形的性質(zhì),即可求得,由勾股定理即可求得,進(jìn)而求得陰影部分的面積.【詳解】解:如圖,設(shè)與相交于點(diǎn),,,,旋轉(zhuǎn),,是等邊三角形,,,,,,,,陰影部分的面積為故選D【考點(diǎn)】本題考查了等邊三角形的性質(zhì),勾股定理,含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),利用含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)坐標(biāo)系中對稱點(diǎn)與原點(diǎn)的關(guān)系判斷即可.【詳解】關(guān)于原點(diǎn)對稱的一組坐標(biāo)橫縱坐標(biāo)互為相反數(shù),所以(3,2)關(guān)于原點(diǎn)對稱的點(diǎn)是(-3,-2),故選C.【考點(diǎn)】本題考查原點(diǎn)對稱的性質(zhì),關(guān)鍵在于牢記基礎(chǔ)知識.3、A【解析】【分析】如圖,過點(diǎn)D作DE⊥x軸于點(diǎn)E.證明△AOC是等邊三角形,解直角三角形求出DE,CE,可得結(jié)論.【詳解】解:如圖,過點(diǎn)D作DE⊥x軸于點(diǎn)E.∵B(6,0),∴OB=6,由旋轉(zhuǎn)的性質(zhì)可知AO=AC=4,OB=CD=6,∠ACD=∠AOB=60°,∵∠AOC=60°,∴△AOC是等邊三角形,∴OC=OA=4,∠ACO=60°,∴∠DCE=60°,∴CE=CD=3,DE==3,∴OE=OC+CE=4+3=7,∴D(7,3),故選:A.【考點(diǎn)】本題考查了旋轉(zhuǎn)變換,含30度角的直角三角形的性質(zhì),勾股定理,等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是掌握旋轉(zhuǎn)變換的性質(zhì).4、D【解析】【分析】把一個圖形繞某一點(diǎn)O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn).【詳解】解:觀察選項(xiàng)中的圖形,只有D選項(xiàng)為△ABO繞O點(diǎn)旋轉(zhuǎn)了180°.【考點(diǎn)】本題考察了旋轉(zhuǎn)的定義.5、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計(jì)算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準(zhǔn)確判定三角形全等,從而利用全等三角形性質(zhì)解決相應(yīng)的問題.6、C【解析】【分析】因?yàn)轫旤c(diǎn)都在小正方形上,故可分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸進(jìn)行尋找.【詳解】分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸,作軸對稱圖形:則△ABM、△ANB、△EHF、△EFC都是符合題意的三角形.故選:C.【考點(diǎn)】考查了利用軸對稱涉及圖案的知識,關(guān)鍵是根據(jù)要求頂點(diǎn)在格點(diǎn)上尋找對稱軸,有一定難度,不要漏解.7、D【解析】【分析】根據(jù)中心對稱的性質(zhì)即可判斷.【詳解】解:對應(yīng)點(diǎn)的連線被對稱中心平分,A,B正確;成中心對稱圖形的兩個圖形是全等形,那么對應(yīng)線段相等,C正確;和不是對應(yīng)角,D錯誤.故選:D.【考點(diǎn)】本題考查成中心對稱兩個圖形的性質(zhì):對應(yīng)點(diǎn)的連線被對稱中心平分;成中心對稱圖形的兩個圖形是全等形.8、C【解析】【分析】由矩形的性質(zhì),可知∠ABC=90°,再由旋轉(zhuǎn),可知△ABB’為等腰三角形,根據(jù)內(nèi)角和求解即可.【詳解】解:連接BB′.∵四邊形ABCD是矩形,∴∠ABC=90°,∵∠CBB′=15°,∴∠ABB′=90°-15°=75°,∵AB=AB′,∴∠ABB′=∠AB′B=75°,∴∠BAB′=180°-2×75°=30°,∴α=30°,故選:C.【考點(diǎn)】本題考查旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.9、A【解析】【分析】根據(jù)網(wǎng)格結(jié)構(gòu)作出旋轉(zhuǎn)后的圖形,然后根據(jù)平面直角坐標(biāo)系寫出點(diǎn)B′的坐標(biāo)即可.【詳解】△A′B′O如圖所示,點(diǎn)B′(2,1).故選A.【考點(diǎn)】本題考查了坐標(biāo)與圖形變化,熟練掌握網(wǎng)格結(jié)構(gòu),作出圖形是解題的關(guān)鍵.10、D【解析】【分析】分四種情況討論,由平行線的性質(zhì)和旋轉(zhuǎn)的性質(zhì)可求解.【詳解】解:設(shè)旋轉(zhuǎn)的度數(shù)為α,若DE∥AB,則∠E=∠ABE=90°,∴α=90°-30°-45°=15°,若BE∥AC,則∠ABE=180°-∠A=120°,∴α=120°-30°-45°=45°,若BD∥AC,則∠ACB=∠CBD=90°,∴α=90°,當(dāng)點(diǎn)C,點(diǎn)B,點(diǎn)E共線時(shí),∵∠ACB=∠DEB=90°,∴AC∥DE,∴α=180°-45°=135°,綜上三角板DEF旋轉(zhuǎn)的度數(shù)可能是15°或45°或90°或135°.故選:D【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),平行線的性質(zhì),利用分類討論思想解決問題是本題的關(guān)鍵.二、填空題1、20°##20度【解析】【分析】根據(jù)題干所給角度即可直接求出的大小,即旋轉(zhuǎn)角的大?。驹斀狻拷猓骸撸嘈D(zhuǎn)角的度數(shù)為,故答案為:20°.【考點(diǎn)】本題考查旋轉(zhuǎn)的性質(zhì).根據(jù)題意找出即為旋轉(zhuǎn)角是解答本題的關(guān)鍵.2、(6053,2).【解析】【分析】根據(jù)前四次的坐標(biāo)變化總結(jié)規(guī)律,從而得解.【詳解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…發(fā)現(xiàn)點(diǎn)P的位置4次一個循環(huán),∵2017÷4=504余1,P2017的縱坐標(biāo)與P1相同為2,橫坐標(biāo)為5+3×2016=6053,∴P2017(6053,2),故答案為(6053,2).考點(diǎn):坐標(biāo)與圖形變化﹣旋轉(zhuǎn);規(guī)律型:點(diǎn)的坐標(biāo).3、【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【詳解】解:∵把△ADE順時(shí)針旋轉(zhuǎn)90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴點(diǎn)F,點(diǎn)B,點(diǎn)C共線,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根據(jù)勾股定理得:EF=,故答案為:.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),勾股定理,靈活運(yùn)用這些性質(zhì)解決問題是本題的關(guān)鍵.4、【解析】【分析】取AB的中點(diǎn)H,連接CH、FH,設(shè)EC,DF交于點(diǎn)G,在△ABC中,由勾股定理得到AB=,由旋轉(zhuǎn)可知:△DCE≌△ACB,從而∠DCA=∠BCE,∠ADC=∠BEC,由∠DGC=∠EGF,可得∠AFB=90o,由直角三角形斜邊上的中線等于斜邊的一半,可得FH=CH=AB=,在△FCH中,當(dāng)F、C、H在一條直線上時(shí),CF有最大值為.【詳解】解:取AB的中點(diǎn)H,連接CH、FH,設(shè)EC,DF交于點(diǎn)G,在△ABC中,∠ACB=90o,∵AC=,BC=2,∴AB=,由旋轉(zhuǎn)可知:△DCE≌△ACB,∴∠DCE=∠ACB,DC=AC,CE=CB,∴∠DCA=∠BCE,∵∠ADC=(180o-∠ACD),∠BEC=(180o-∠BCE),∴∠ADC=∠BEC,∵∠DGC=∠EGF,∴∠DCG=∠EFG=90o,∴∠AFB=90o,∵H是AB的中點(diǎn),∴FH=AB,∵∠ACB=90o,∴CH=AB,∴FH=CH=AB=,在△FCH中,F(xiàn)H+CH>CF,當(dāng)F、C、H在一條直線上時(shí),CF有最大值,∴線段CF的最大值為.故答案為:【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)、勾股定理,解決本題的關(guān)鍵是掌握全等的性質(zhì).5、(3,﹣2)【解析】【分析】根據(jù)平面直角坐標(biāo)系內(nèi)兩點(diǎn)關(guān)于原點(diǎn)對稱橫縱坐標(biāo)互為相反數(shù),即可得出答案.【詳解】解:根據(jù)平面直角坐標(biāo)系內(nèi)兩點(diǎn)關(guān)于原點(diǎn)對稱橫縱坐標(biāo)互為相反數(shù),∴點(diǎn)(﹣3,2)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是(3,﹣2),故答案為(3,﹣2).【考點(diǎn)】本題主要考查了平面直角坐標(biāo)系內(nèi)兩點(diǎn)關(guān)于原點(diǎn)對稱橫縱坐標(biāo)互為相反數(shù),難度較?。?、【解析】【分析】如圖,將△MOG繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)60°,得到△MPQ,易知△MOP為等邊三角形,繼而得到點(diǎn)O到三頂點(diǎn)的距離為:ON+OM+OG=ON+OP+PQ,由此可以發(fā)現(xiàn)當(dāng)點(diǎn)N、O、P、Q在同一條直線上時(shí),有ON+OM+OG最小,此時(shí),∠NMQ=75°+60°=135°,過Q作QA⊥NM交NM的延長線于A,利用勾股定理進(jìn)行求解即可得.【詳解】如圖,將△MOG繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)60°,得到△MPQ,顯然△MOP為等邊三角形,∴,OM+OG=OP+PQ,∴點(diǎn)O到三頂點(diǎn)的距離為:ON+OM+OG=ON+OP+PQ,∴當(dāng)點(diǎn)N、O、P、Q在同一條直線上時(shí),有ON+OM+OG最小,此時(shí),∠NMQ=75°+60°=135°,過Q作QA⊥NM交NM的延長線于A,則∠MAQ=90°,∴∠AMQ=180°-∠NMQ=45°,∵M(jìn)Q=MG=4,∴AQ=AM=MQ?cos45°=4,∴NQ=,故答案為.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),最短路徑問題,勾股定理,解直角三角形等知識,綜合性較強(qiáng),有一定的難度,正確添加輔助線是解題的關(guān)鍵.7、【解析】【分析】根據(jù)菱形具有的平行四邊形基本性質(zhì),對角線互相平分,且交點(diǎn)為坐標(biāo)原點(diǎn),則,關(guān)于原點(diǎn)對稱,因此在直角坐標(biāo)系中兩點(diǎn)的坐標(biāo)關(guān)于原點(diǎn)對稱,橫坐標(biāo)與橫坐標(biāo)互為相反數(shù),縱坐標(biāo)與縱坐標(biāo)互為相反數(shù)便可得.【詳解】∵四邊形是菱形,對角線相交于坐標(biāo)原點(diǎn)∴根據(jù)平行四邊形對角線互相平分的性質(zhì),和;和均關(guān)于原點(diǎn)對稱根據(jù)直角坐標(biāo)系上一點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)為可得已知點(diǎn)的坐標(biāo)是,則點(diǎn)的坐標(biāo)是.故答案為:.【考點(diǎn)】本題旨在考查菱形的基本性質(zhì)及直角坐標(biāo)系中關(guān)于原點(diǎn)對稱點(diǎn)的坐標(biāo)的知識點(diǎn),熟練理解掌握該知識點(diǎn)為解題的關(guān)鍵.8、6秒或19.5秒【解析】【分析】設(shè)A燈旋轉(zhuǎn)t秒,兩燈光束平行,B燈光束第一次到達(dá)BQ需要180÷4=45(秒),推出t≤45?12,即t≤33.利用平行線的性質(zhì),結(jié)合角度間關(guān)系,構(gòu)建方程即可解答.【詳解】解:設(shè)A燈旋轉(zhuǎn)t秒,兩燈的光束平行,B燈光束第一次到達(dá)BQ需要180÷4=45(秒),∴t≤45﹣12,即t≤33.由題意,滿足以下條件時(shí),兩燈的光束能互相平行:①如圖,∠MAM'=∠PBP',12t=4(12+t),解得t=6;②如圖,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;綜上所述,滿足條件的t的值為6秒或19.5秒.故答案為:6秒或19.5秒.【考點(diǎn)】本題主要考查平行線的性質(zhì),解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.9、【解析】【分析】取AD的中點(diǎn)N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.根據(jù)菱形的性質(zhì),可得△ADB是等邊三角形,從而得到△AEN是等邊三角形,可證得△AEF≌△NEG,進(jìn)而得到點(diǎn)G的運(yùn)動軌跡是射線NG,繼而得到GD+GC=GE+GC≥EC,在Rt△BEH和Rt△ECH中,由勾股定理,即可求解.【詳解】如圖,取AD的中點(diǎn)N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.∵四邊形ABCD是菱形∴AD=AB,∵∠A=60°,∴△ADB是等邊三角形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等邊三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GND=180°﹣60°﹣60°=60°,∴點(diǎn)G的運(yùn)動軌跡是射線NG,∴D,E關(guān)于射線NG對稱,∴GD=GE,∴GD+GC=GE+GC≥EC,在Rt△BEH中,∠H=90°,BE=1,∠EBH=60°,∴BH=BE=,EH=,在Rt△ECH中,EC==,∴GD+GC≥,∴GD+GC的最小值為.故答案為:.【考點(diǎn)】本題主要考查了菱形的性質(zhì),等邊三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識,熟練掌握菱形的性質(zhì),等邊三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識是解題的關(guān)鍵.10、【解析】【分析】過點(diǎn)A作軸,垂足為C,過點(diǎn)作軸,垂足為,證明,所以,根據(jù)得到,所以,寫出對應(yīng)點(diǎn)的坐標(biāo)即可.【詳解】解:如圖,過點(diǎn)A作軸,垂足為C,過點(diǎn)作軸,垂足為,∵軸,軸,∴,∵將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段,∴,∵,,∴,∴,∴,∵,∴,∴,∴,故答案為:.【考點(diǎn)】本題考查旋轉(zhuǎn)的性質(zhì),證明是解答本題的關(guān)鍵.三、解答題1、(1)見解析(2)菱形,理由見詳解【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)得到,,由旋轉(zhuǎn)的性質(zhì)得到,,,根據(jù)全等三角的判定定理得到;(2)由旋轉(zhuǎn)的定義得,因此,根據(jù)三角形的內(nèi)角和定理得,因此,,證得四邊形A1BCE為平行四邊形,由于,證得四邊形A1BCE為菱形.(1)證明:∵是等腰三角形,∴,,∵將繞頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)到的位置,∴,∴,,,在與中,,∴(ASA);(2)解:四邊形是菱形,理由如下:∵將繞頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)到的位置,∴,,∴,,∵,,∴,∴,∴,∵,∴,∵,∴,∴,∴,∵,,∴四邊形是平行四邊形,∵,∴四邊形是菱形.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),菱形的判定定理等,熟悉掌握旋轉(zhuǎn)的性質(zhì),全等三角形的判定定理,菱形的判定方法是本題的解題關(guān)鍵.2、(1)見解析;(2)①見解析;②或【解析】【分析】(1)證明△AMO≌△BNO即可;(2)①連接BN,證明△AMO≌△BNO,得到∠A=∠OBN=45°,進(jìn)而得到∠MBN=90°,且△OMN為等腰直角三角形,再在△BNM中使用勾股定理即可證明;②分兩種情況分別畫出圖形即可求解.【詳解】解:(1)∵和都是等腰直角三角形,∴,又,,∴,∴,∴;(2)①連接BN,如下圖所示:∴,,且,∴,∴,,∴,且為等腰直角三角形,∴,在中,由勾股定理可知:,且∴;②分類討論:情況一:如下圖2所示,設(shè)AO與NB交于點(diǎn)C,過O點(diǎn)作OH⊥AM于H點(diǎn),,為等腰直角三角形,∴,在中,,∴;情況二:如下圖3所示,過O點(diǎn)作OH⊥AM于H點(diǎn),,為等腰直角三角形,∴,在中,,∴;故或.【考點(diǎn)】本題屬于幾何變換綜合題,考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),勾股定理等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考常考題型.3、(1)證明見解析(2)-1【解析】【分析】(1)先由旋轉(zhuǎn)的性質(zhì)得AE=AB,AF=AC,∠EAF=∠BAC,則∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,從而得出BE=CF;(2)由菱形的性質(zhì)得到DE=AE=AC=AB=1,AC∥DE,根據(jù)等腰三角形的性質(zhì)得∠AEB=∠ABE,根據(jù)平行線得性質(zhì)得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判斷△ABE為等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.【詳解】(1)∵△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,△ACF≌△ABEBE=CF.(2)∵四邊形ACDE為菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE為等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=.考點(diǎn):1.旋轉(zhuǎn)的性質(zhì);2.勾股定理;3.菱形的性質(zhì).4、(1);(2)①;②;(3)【解析】【分析】(1)連接OB,,,由,O為BC的中點(diǎn),得到,則,,再由旋轉(zhuǎn)的性質(zhì)可得,,由此求解即可;(2)①連接,,由(1)可知(因?yàn)橐彩切D(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,則,可以得到,再由可以得到,由此即可求解;②連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,然后證明,,得到,則,再證明△OBM≌△NEM得到,,從而推出MN為△BFE的中位線,得到,則;(3)連接與BF交于H,由,,可得,,由含30度角的直角三角形的性質(zhì)可以得到,,再由勾股定理可以得到,由此即可得到答案.【詳解】解:(1)如圖所示,連接OB,,,∵,O為BC的中點(diǎn),∴,∴,∴,∵將點(diǎn)O沿BC翻折得到點(diǎn),∴,由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴旋轉(zhuǎn)角為,故答案為:;(2)①如圖所示,連接,,由(1)可知(因?yàn)橐彩切D(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴,∵,∴,故答案為:;②如圖所示,連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,∵,∴,∴,∵,∴,∴,∴,∴,∴∵M(jìn)為BE的中點(diǎn),∴,在△OBM和△NEM中,,∴△OBM≌△NEM(SAS),∴,,∴,∴N為EF的中點(diǎn),∴MN為△BFE的中位線,∴,∴;(3)如圖所示,連接與BF交于H,∵,,∴,,∴,∵,∴,∴,∵,∴,∵,,∴,∵,∴.故答案為:.【考點(diǎn)】本題主要考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,三角形中位線定理,含30度角的直角三角形的性質(zhì),勾股定理,平行線的性質(zhì)與判定等等,解題的關(guān)鍵在于能夠熟練掌握旋轉(zhuǎn)的性質(zhì).5、(1)=(2)證明見解析(3),詳見解析【解析】【分析】(1)根據(jù)旋轉(zhuǎn)性質(zhì)及等腰三角形性質(zhì)即可得答案;(2)由旋轉(zhuǎn)性質(zhì)知∠AOB=∠DOC,可證得∠AOG=∠DOE,結(jié)合OA=OB及(1)中結(jié)論,得證;(3)分兩種情況討論,設(shè)∠A=x°,先利用三角形內(nèi)角和求出x的值,再借助勾股定理求出CD的長度即可.(1)解:由旋轉(zhuǎn)知,∠A=∠C,∠B=∠D,∵OA=OB,∴OC=OD,∠A=∠B=∠C=∠D∴∠A=∠D,故答案為:=.(2)證明:由旋轉(zhuǎn)知,OA=OC,OB=OD,∠AOB=∠COD,∴∠AOB-∠BOC=∠COD-∠BOC,即∠AOG=∠DOE,∵OA=OB,∴OA=OB=OC=OD,又∵∠A=∠D,∴△AOG≌△DOE.(3)解:分兩種情況討論,①如圖所示,設(shè)∠A=∠B=∠C=∠D=x°,則∠DOB=2x°,∵OB⊥CD,∴∠OED=90°,∴x+2x=90°,解得:x=30,即∠D=30°,在Rt△ODE中,OE=3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論