A.(0,e]B.(0,e)C.(0,1(令f(x(=,則f(x(在(0,a(上單調(diào)遞增,2.已知函數(shù)f(x(=ex(x2+1((其中e為自然對數(shù)的底數(shù)(1)討論函數(shù)y=f(x(+(a-2(x.ex(a∈R(的單調(diào)性;2x-e2x>λ|f(x1(-f(x2(|恒成立,求實(shí)數(shù)λ的取值范圍.f(x(+(a-2(x.ex=[x2+(a-2(x+1[ex,x∈R,則hI(x(=(x2+ax+a-1(ex=(x+a-1((x+1(ex,令hI(x(=0,解得x=1-a或x=-1.I(x(≥0恒成立且hI(x(不恒為零,所以,函數(shù)h(x(的增區(qū)間為(-∞,1-a(、(-1,+∞(,減區(qū)間為(1-a,-1(;當(dāng)1-a>-1時(shí),即a<2時(shí),由hI(x(>0可得x<-1或x>1-a,由hI(x(<0可得-1<x<1-a.所以,函數(shù)h(x(的增區(qū)間為(-∞,-1(、(1-a,+∞(,減區(qū)間為(-1,1-a(.當(dāng)a>2時(shí),函數(shù)h(x(的增區(qū)間為(-∞,1-a(、(-1,+∞(,減區(qū)間為(1-a,-1(;當(dāng)a<2時(shí),函數(shù)h(x(的增區(qū)間為(-∞,-1(、(1-a,+∞(,減區(qū)間為(-1,1-a(.所以f(x(在(0,+∞(上單調(diào)遞增,且f(x(>f(0(=1>0.,所以f(x1(>f(x2(,則不等式e2x-e2x>λ|f(x1(-f(x2(|可化為e2x-e2x>λ[f(x1(-f(x2([,2x-λf(x1(>e2x-λf(x2(.令g(x(=e2x-λf(x(,則問題等價(jià)于函數(shù)g(x(在(0,+∞(上單調(diào)遞增,即gI(x(=2e2x-λfI(x(≥0在(0,+∞(上恒成立, 令p(xx∈(0,+∞(,則p/(xx(<0,函數(shù)p(x(在(0,1(上單調(diào)遞減;x(>0,函數(shù)p(x(在(1,+∞(上單調(diào)遞增;(1)?x∈D,m≤f(x(?m≤f(x(min;(2)?x∈D,m≥f(x(?m≥f(x(max;(3)?x∈D,m≤f(x(?m≤f(x(max;(4)?x∈D,m≥f(x(?m≥f(x(min.間(mln2,+∞(上單調(diào)遞增;(2),+∞(.將a=2代入f(x(的解析式,得f(x(=log2x+-,求導(dǎo)得f當(dāng)m≤0時(shí),f/(x(>0,故f(x(在(0,+∞(上單調(diào)遞增;f/(x(>0,于是f(x(在區(qū)間(0,mln2(上單調(diào)遞(mln2,+∞(上單調(diào)遞增.所以g/(t(=-≤0在(0,+∞(上恒成立,可得2m≥t-tlnt在(0,+∞(上恒成立,設(shè)h(t(=t-tlnt,則h/(t(=-lnt,令h/(t(=0,得t=1.所以h(t(max=h(1(=1,得m≥.所以實(shí)數(shù)m的取值范圍為,+∞(. (5)寫出函數(shù)f(x(的單調(diào)區(qū)間,解決恒成立問題的策略:若f(x(在閉區(qū)間D上有最值,則f(x(>0在區(qū)間D上恒成立?f(x(min>0;f(x(<0在區(qū)間D上恒成立f(x(min<0.解決恒成立與存在性問題時(shí),要注意理解4.已知函數(shù)f(x)=(a+1)lnx+ax2+1.)-f(x2)|≥4|x1-x2|.求導(dǎo)f/(x)=+4x,切線斜率k=f/(1)=7∴曲線y=f(x)在(1,f(1)(處的切線方程為y=7x-4.(2)∵a≤-2,f(x)的定義域?yàn)?0,+∞),求導(dǎo)f/(x)=ax∴f(x)在(0,+∞)上單調(diào)遞減.不妨假設(shè)x1≥x2,∴|f(x1(-f(x2(|≥4|x1-x2|等價(jià)于f(x2(-f(x1(≥4x1-4x2.即f(x2(+4x2≥f(x1(+4x1.令g(x)=f(x)+4x,則g/(x(=+2ax+4=.∵a≤-2,x>0,∴g/(x(≤=≤0(當(dāng)且僅當(dāng)x=時(shí)等號成立).從而g(x)在(0,+∞)單調(diào)遞減,故g(x1)≤g(x2),即f(x2(+4x2故對任意x1,x2∈(0,+∞(,|f(x1(-f(x2(|≥4|x1-x2|.5.已知函數(shù)f(x(=+lnx.(1)求出f(x(的極值點(diǎn);,若f(x1(=f(x2(,則x1+x2>4. ,f(x(單調(diào)遞減;,f(x(單調(diào)遞增,因?yàn)閒(x1(=f(x2(,不妨設(shè)0<x1<2<x2,x2-4>0令H(t(=2t2-2-4tlnt(t>1),H/(t(=4t-4lnt-4(t>1),因?yàn)镠Ⅱ(t>0,所以H/(t(在(1,+∞(上是增函數(shù),所以H/(t(>H/(1)=0,所以H(t(在(1,+∞(上是增函數(shù),(1)討論函數(shù)y=f(x)的單調(diào)性;f(x)在(lna,+∞)上是單調(diào)增函數(shù);(x)=ex-a.,f(x)在(-∞,lna)上是單調(diào)減函數(shù);<lna<x2,x+xx2-x1,也就是證e<ex2x2-x1,x-xx-x又x2-x1>0,只要證e2-e-2>x2-x1(*).x-xx-x設(shè)g(t)=(et-e-t)-2t(t>0),g(t)=(et+e-t)-2>0,∴x1+x2<2lna.7.已知函數(shù)f(x(=lnx-x-1.(1)討論f(x(的單調(diào)性;則f(xf(x)>0,則f(x(在(0,上單調(diào)遞增,(2)根據(jù)題意,g(x(=xf(x(+a得到g(x(=lnx-ax, 令h(t(=lnt-,,令h/(t(=0t(>0在(0,1(上成立,8.已知函數(shù)g(x)=ex-ax2-ax,h(x)=ex-2x-lnx.其中e為自然對數(shù)的底數(shù).(1)若f(x)=h(x)-g(x),討論f(x)的單調(diào)性;【詳解】解:(1)f(x)=h(x)-g(x)=ex-2x-lnx-ex+ax2+ax=ax2+(a-2)x-lnx(x>0),f/(x)=2ax+(a-2)-==(x>0),x-x,即證(x1-x2(e2>ex-x-1. t令t=x1-x2(t<0(,即證te2-et+1>0,(t)=,:p(t)>p(0)=0:h/(t)<0,:h(t)在(-∞,0)上遞減,結(jié)果.9.已知函數(shù)f(x)=x-a+2lnx((a∈R)在定義域上有兩個(gè)極值點(diǎn)x1,x2,則f(x1.x2(的取值范圍是()A.(-∞,1)B.(-∞,0)C.(0,+∞)D.(1,+∞)令g(x)=x2-2ax+a,(Δ=(-2a)2-4a>0:f(x1.x2(=f(a)=a-a+2lna(=a-2alna-1,令T(a)=a-2alna-1(a>1),:T'(a)=-1-2lna<0:T(a)<T(1)=0,故f(x1.x2(的取值范圍是(-∞,0),10.已知函數(shù)f(x(=+(a-3(x+alnx(a∈R(,在定義域上有兩個(gè)極值點(diǎn)x1,x2,且x1<x2.(2)求證:f(x1(+f(x2(+5>0 x>x2故f(x1)+f(x2)=+(a-3)x1+alnx1++(a-3)x2+alnx2=-x1x2+(a-3)(x1+x2)=-a+(a-3)(3-a)+alna=alna-+2a-,由于h(e-3(=-e-3<0,h(1)=2>0,所以當(dāng)0<a<1時(shí),g(a)≥g(t)=tlnt-+2t-=t(t-3)-+2t-=-t-,-3,1),-t-=(t-1)2-5>-5,所以f(x1)+f(x2)+5>0.11.已知函數(shù)f(x(=2lnx,g(x(=ax2-2x(a>0).(2)設(shè)函數(shù)h(x(=f(x(+g(x(-(a+2(x+3.將切線方程y=2ex-4代入g(x(=ax2-2x(a>0)中,可得ax2-(2e+2(x+4=0.,(2)(i)h(x(=2lnx+ax2-(a+4(x+3,設(shè)x1<x2,x2(x(<0;即函數(shù)h(x(有兩個(gè)極值點(diǎn)x1,x2.(ii)h(x1(+h(x2(=2(lnx1+lnx2(+a(x+x(-(a+4((x1+x2(+6=2lnx1x2+a[(x1+x2(2-2x1x2[-(a+4((x1+x2(+6若h(x1(+h(x2(≤-a-3恒成立,則2ln+-+3≤0恒成立,(1)討論函數(shù)f(x)的單調(diào)性;(2)設(shè)函數(shù)g(x)=2f(x)-x2+2ax+,若g(x)存在兩個(gè)極值點(diǎn)x1,x2(x1<x2(,證明:g(x1(-g(x2(>2(a-2)(x1-x2(.(x)>0, lllll從而gl(x)=-2-=,x>0.2-16≤0ll0<x1<2,x2>2,所以g(x1(-g(x2(>2(a-2)(x1-x2(等價(jià)于2aa,令h(x)=-x+2lnx(x>2),hl(x)=--1+=<0,故g(x1(-g(x2(>2(a-2)(x1-x2(成立.13.已知函數(shù)f(x(=ex-x,g(x(=(x+k(ln(x+k(-x.+l(x(=ex-1,gl(x(=ln(x+k(,l(t(=gl(t(…①,得et-ln(t+1(-1=0,令φ(t(=et-ln(t+1(-1,則φl(t(=et-,因?yàn)?t(=etl(t(在(-1,+∞(單調(diào)遞增,t(>0,φ(t(單調(diào)遞增;t(<0,φ(t(單調(diào)遞減;(2)解法一:令h(x(=f(x(-bx+g(b(-f(0(-g(0((x>0),則hl(x(=ex-(b+1(,所以當(dāng)x>ln(b+1(時(shí),hl(x故h(x(≥h(ln(b+1((=f(ln(b+1((+g(b(-f(0(-g(0(-bln(b+1(=(b+k(ln(b+k(-(b+1(ln(b+1(-klnk.令t(x(=(x+k(ln(x+k(-(x+1(ln(x+1(-klnk(x>0),則tl(x(=ln(x+k(-ln(x+1(.l(x(>0,t(x(在(0,+∞(單調(diào)遞增,(iii)若0<k<1時(shí),tl(x(<0,t(x(在(0,+∞(單調(diào)遞減,x-x-1≥0,x-1≥lnx,x-xlnx-1≤0…(*).令φ(x(=ex-x-1,x(=ex-1≥0,φ(x(單調(diào)遞增,x(=ex-1≤0,φ(x(單調(diào)遞減,又由上式得,當(dāng)x>0時(shí),-1≥ln,1-x≥-xlnx,x-xlnx-1≤0.令h(x(=g(x(-ax+f(a(-f(0(-g(0((x>0),則hl(x(=ln(x+k(-a,a-k時(shí),hl(x(>0,h(x(單調(diào)故h(x(≥h(ea-k(=g(ea-k(-a(ea-k(+f(a(-f(0(-g(0(=(k-1(a+k-1-klnk.(ii)若0<a≤lnk時(shí),hl(x所以h(x(>h(0(=f(a(-f(0(=ea-a-1.-1(a+k-1-klnk≥0,則當(dāng)a>lnk時(shí),h(x(≥(k-1(a+k-1-klnk>(k-1(lnk+k-1-klnk=-lnk+k-1>0(由(*)知); 也即證b-a>2.,故只需證(b-a((eb-a+1(>2(eb-a-1(①,整理得:(t-2(et+t+2>0②,令h(t(=(t-2(et+t+2,t>0,則h/(t(=(t-1(et+1,hⅡ(t(=tet>∴h/(t(在(0,+∞(上單調(diào)遞增,又h/(0(=0,,從而h(t(在(0,+∞(上單調(diào)遞增,即證(b-a((eb+ea(-2(eb-ea(>0,令u(x(=(x-a((ex+ea(-2(ex-ea(,x>a,則u/(x(=(ex+ea(+(x-a(ex-2ex=(x-a-1(ex+ea,uⅡ(x(=(x-a(ex>0,∵b>a,∴u(b(=(b-a((eb+ea(-2(eb-ea(>0,故>.(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;又f/(x)=ex(ln(1+x)+,∴切線斜率k=f/(0)=1 令h=ln(3)解:原不等式等價(jià)于f(s+t)-f(s)>f(t)-f(0),令m(x)=f(x+t)-f(x),(x,t>0),即證m(x)>m(0),∵m(x)=f(x+t)-f(x)=ex+tln(1+x+t)-exln(1+x),m/(x)=ex+tln(1+x+t)+-exln(1+x)-=g(x+t)-g(x),由(2)知g(x)=f/(x)=ex(ln(1+x)+在[0,+∞(上單調(diào)遞增,∴g(x+t)>g(x),(x)>0因?yàn)閒(x(有兩個(gè)極值點(diǎn),所以f/(x(=0有兩個(gè)根,. 所以函數(shù)y=在(-∞,1(單調(diào)遞增,在(1,+∞(單調(diào)遞減,x1-lna①,x2=lnx2-lna②,①-②得x1-x2=lnx1-lnx2=ln,令g(t(=tlnt+2lnt-3(t-1(,則g(t(=lnt+-2,令h(t(=lnt+-2,則h(t(=-=<0,所以g(t(在(0,1(單調(diào)遞減,所以g(t(>g(1(=0,所以g(t(在(0,1(單調(diào)遞增,所以g(t(<g(1(=0,即tlnt+2lnt-3(t-1(<0,得tlnt+2lnt<3(t-1(17.已知f(x(=x-alnx-x2.(2)若函數(shù)y=f(x(存在兩個(gè)不同的極值點(diǎn)x1,x2,求f(x1(+f(x2(的取值范圍.又曲線y=f(x(在x=1處的切線與y=x垂直,(2)因?yàn)閒,(x(=1--ax=,x>0,所以f(x(的兩個(gè)極值點(diǎn)x1,x2是方程-ax2+x-a=0的兩正根,所以f(x1(+f(x2(=x1-alnx1-x+x2-alnx2-x=(x1+x2(-aln(x1x2(-[(x1+x2(2-2x1x2[所以g(a(在(0,單調(diào)遞減,+所以f(x1(+f(x2(的取值范圍是,+∞(.曲線y=f(x(在x=e處切線的斜率為k=f,(e(=3+lne=4,又“f(e(=2e+elne=3e,:切線方程為y-3e=4(x-e(,即曲線y=f(x(在x=e處的切線方程為4x-y-e=0;(2)若f(x(有兩個(gè)零點(diǎn)x1,x2,得-a故lnx,則lnx2=ln(tx1(=lnt+lnx1=lnt+令h(tt>3(,則h,(t,令g(t(=-2lnt+t-(t>3(,則g,(t:g(t(在(3,+∞(上單調(diào)遞增,:g(t(>g(3(=-2ln3+3-=(4-3ln3(=(lne4-ln33(>0, (t-1)2∴h/(t(=g(t(>0,則h(t(在(t-1)2故x1x2>.19.已知函數(shù)f(x(=lnx+x2-2ax,a∈R,(2)若函數(shù)f(x(有兩個(gè)極值點(diǎn)x1,x2(x1<x2(,求2f(x1(-f(x2(的最小值.(2)-【詳解】(1)因?yàn)閒(x(=lnx+x2所以f/(x)=+2x-2a=,此時(shí)f(x)在(0,+∞)上單調(diào)遞增,(x)>0;3<x<x4所以f(x)在(0,x3(,(x4,+∞(上單調(diào)遞增,在(x3,x4(上單調(diào)遞減;則2f(x1(-f(x2(=2(lnx1+x-2ax1(-(lnx2+x-2ax2(=2(lnx1+x-2x-1(-(lnx2+x-2x-1(=-2x+2lnx1-lnx2+x-1=x-22+2ln-lnx2-1=x-2-lnx-2ln2-1lnt-2ln2-1,tlnt-2ln2-1, 所以g(t(min=g所以2f(x1(-f(x2(的最小值為-.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解決的關(guān)鍵是,利用韋達(dá)定理將雙變量的2f(x1(-f(x2(轉(zhuǎn)化為關(guān)于單變量x的函 x1ex2-x2ex1<m(x2-x1(?<令函數(shù)f(x)=,則上述不等式等價(jià)于f(x2)<f(x1)(當(dāng)x1<x2時(shí)),即f(x)=在[1,2[上單調(diào)遞減.x2x2.f/(x)=ex.x-(ex+m(=ex(x2x2.2>0(x,2[(,故f/(x)≤0等價(jià)于:ex(x-1(-m≤0?m≥ex(x-1(.令k(x)=ex(x-1(,求導(dǎo):k/(x)=ex(x-1(+ex=xex.x>0且x∈[1,2[時(shí)x>0,故k/(x)>0,即k(x)=ex(x-1(在[1,2[上單調(diào)遞增.k(2)=e2(2-1(=e2.由m≥ex(x-1(恒成立,且ex(x-1(的最大值為e2,得到m≥e221.已知函數(shù)f(x(=(x2-ax-a(ex.(1)討論函數(shù)f(x(的單調(diào)性;∈[-4,0[,都有|f(x2(-f(x1(|<4e-2+mea恒成立,求m的取值范圍.(2)m>【詳解】(1)函數(shù)f(x(=(x2-ax-a(ex的定義域?yàn)镽,f/(x(=[x2+(2-a(x-2a[ex=(x-a((x+2(ex.令f/(x(=0,解得x=a或x=-2.當(dāng)a<-2,令f/(x(>0得x<a或x>-2;令f/(x(<0得a<x<-2,∴函數(shù)f(x(在(-∞,a(和(-2,+∞(上單調(diào)遞增,在(a,-2(上單調(diào)遞減;當(dāng)a=-2,f/(x(=(x+2(2ex≥0恒成立,∴函數(shù)f(x(在(-∞,+∞(上單調(diào)遞增;當(dāng)a>-2,令f/(x(>0得x<-2或x>a;令f/(x(<0得-2<x<a,∴函數(shù)f(x(在(-∞,-2(和(a,+∞(上單調(diào)遞增,在(-2,a(上單調(diào)遞減.綜上,當(dāng)a<-2,函數(shù)f(x(在(-∞,a(和(-2,+∞(上單調(diào)遞增,在(a,-2(上單調(diào)遞減;當(dāng)a=-2,函數(shù)f(x(在(-∞,+∞(上單調(diào)遞增; 當(dāng)a>-2,函數(shù)f(x(在(-∞,-2(和(a,+∞(上單調(diào)遞增,在(-2,a(上單調(diào)遞減.f(x(在(-4,-2(上單調(diào)遞增,在(-2,0(上單調(diào)遞減.∴f(x(max=f(-2(=(4+a(e-2.又f(-4(=(16+3a(e-4>0,f(0(=-a<0,∴f(x(min=f(0(=-a.∈[-4,0[,|f(x2(-f(x1(|max=|f(-2(-f(0(|=(4+a(e-2+a.∈[-4,0[,都有|f(x2(-f(x1(|<4e-2+mea恒成立,(e-2+1((1-a(a.∴函數(shù)g(a)=在(0,1(上單調(diào)遞增,在(1,2(上單調(diào)遞減,max=g22.已知f(x(=ex-ax,g(x(=lnx-ax,若對任意x1∈(0,+∞(,都存在x2∈(0,+∞(,使得f(x1(g(x2(=x1x2【答案】(-∞,0[則F/(x)=,故F(x)的值域?yàn)閇e-a,+∞(;故G(x)的值域?yàn)?a;若a≥e,則e-a≤0,故F(x)值域[e-a,+∞(?[0,+∞(,且恒有G(x)≤-a<0.但當(dāng)F(x1)≥0時(shí),恒有F(x1)G(x2)≤0,故答案為:(-∞,0[.2∈B,使得M(x1)=N(x2)?{M(x)|x∈A{?{N(x)|x∈B{,即M(x)在定義域A上的值域是函數(shù)N(x)在定義域B上的值域的子集.23.已知函數(shù)f(x(=-mx+lnx+1,g(x(=cosx+xsinx-1.(1)求g(x(在區(qū)間[0,π[的最大值和最小值;(2)討論函數(shù)f(x(的單調(diào)區(qū)間與極值;,π[,使得不等式f(x1(-g(x2(>1成立,試求實(shí)數(shù)m的所以g(x)max=g=-1,因?yàn)間(0(=0,g(π(=-2,所以g(x(min=-2,g(x(在區(qū)間[0,π[的最大值和最小值分別是-1,-2;(2)由f(x(=-mx+lnx+1?f/(x(=-m+,函數(shù)f(x(的定義域?yàn)槿w正實(shí)數(shù)集,當(dāng)x>時(shí),f/(x(<0,f(x),+∞(上在單調(diào)遞減,該函數(shù)有極大值f=-lnm,無極小值, ,π[,使得不等式f(x1(-g(x2(>1成立,等價(jià)于f(x(在[1,2[上的最小值與g(x(在[0,π[上的最小值的差大于1,當(dāng)m≥1時(shí),則有0<≤1,由(2)可知f(x(在[1,2[上的最小值為f(x(min=f(2(=-2m+1+ln2,由(1)可知g(x(在[0,π[上的最小值為-2,所以有-2m+1+ln2-(-2(>1?m<1ln2?1≤mln2;-f(1(=ln2-m,所以當(dāng)<m<ln2時(shí),f(x(min=f(1(=-m+1,此時(shí)有-m+1-(-2(>1?m<2?m<ln2;當(dāng)ln2≤m<1時(shí),f(x(min=f(2(=-2m+1+ln2,則有-2m+1+ln2-(-2(>1?m<1+ln2?l 24.已知函數(shù)f(x)=,g(x)=ax+b,設(shè)F(x)=f(x)-g(x).(2)求f(x)在[2,m](m>2)上的最小值;【答案】(1)-1-b;【詳解】(1)依題意,函數(shù)F(x)=f(x)-g(x)=-ax-b,其定義域?yàn)?0,+∞),當(dāng)a=1時(shí),F(xiàn)(x)=-x-b,求導(dǎo)得F/(x)=-1,(x)<0,所以F(x)的最大值為F(1)=-1-b.f/(x)<0,所以當(dāng)2<m≤4時(shí),f(x)min=f(2)=;當(dāng)m>4時(shí),f(x)min=f(m)=.兩式相減得lnx2-lnx1=(x2-x1)[a(x2+x1)+b]?=a(x2+xx1x1x2+x1x1tx1+x1t+1,令t=x2>12-2(x2-x1)=lntx1-2(txx1x1x2+x1x1tx1+x1t+1,所以(x1+x2)g(x1+x2)>2.25.已知函數(shù)f(x)=ex-ax.(1)討論f(x)的單調(diào)性;(lna,+∞(單調(diào)遞增(2)[0,e[【詳解】(1)由題知函數(shù)f(x)的定義域?yàn)镽,f/(x)=(x)=ex-a>0,函數(shù)f(x)在R上單調(diào)遞增;(x)=ex-a在R上單調(diào)遞增,且f/(lna)=elna-a=a-a=0,(x)=ex-a>0,函數(shù)f(x)單調(diào)遞增,當(dāng)a>0時(shí),函數(shù)f(x)在(-∞,lna(上單調(diào)遞減,在(lna,+∞(單調(diào)遞增.當(dāng)a>0時(shí),函數(shù)f(x)在(-∞,lna(上單調(diào)遞減,在(lna,+∞(單調(diào)遞增,所以f(x)min=f(lna(=a-alna=a(1-lna(≥0,解得0<a≤e,f/(x)=ex-2=0?x=ln2,所以f(x)在(-∞,ln2(上單調(diào)遞減,在(ln2,+∞(單調(diào)遞增,f(x)min=f(ln2(=2-2ln2,∵f(x)=t(t∈R)有兩個(gè)實(shí)根x1和x2,∴f(x1)=ex-2x1=t,f(x2)=ex-2x2=t,不妨取x1<ln2<x2,要證|x1-x2|<3t-1,即證x2-x1<3t-1=2t-(1-t(,現(xiàn)證明x2<2t2<2(ex-2x2(?2ex-5x2>0,令u(x(=2ex-5x,x>ln2,u/(x(=2ex-5=0?x=ln,再證明x1≥1-t,即x1≥1-ex+2x1?ex-x1-1≥0,令v(x(=ex-x-1,x<ln2,v/(x(=ex-1=0?x=0, 所以v(x(在(-∞,0(單調(diào)遞減,在(0,ln2(單調(diào)遞增,即v(x(≥v(0(=e0-0-1=0,所以ex-x1-1≥0,即x1≥1-t,-x1≤t-1,所以x2-x1<3t-1,即得證|x1-x2|<3t-1.26.已知函數(shù)f(x(=2x-ex.(1)求函數(shù)f(x(在x=1處的切線方程;(2)求函數(shù)f(x(的極值;(3)若關(guān)于x的方程f(x(=a(a∈R(有兩個(gè)根x1和x2,求證:|x1【答案】(1)(2-e(x-y=0又f(1(=2-e,故f(x(在x=1處的切線方程為y-(2-e(=(2-e((x-1(,即(2-e(x-y=0.(2)函數(shù)f(x(=2x-ex的定義域?yàn)镽,又f/(x(=2-ex,故f(x(在(-∞,ln2(上單調(diào)遞增,在(ln2,+∞(上單調(diào)遞減,所以f(x(的極大值為f(ln2(=2ln2-eln2=2ln2-2f(x1(=f(x2(=a,構(gòu)造g(x(=f(x(-(2-e(x=ex-ex,x∈(ln2,+∞(,g(x(在(ln2,1(上單調(diào)遞增,在(1,+∞(上單調(diào)遞減,g(x(≤g(1(=0,=f(x2(-(2-e(x2≤0,所以x2≤構(gòu)造h(x(=f(x(-x+1=x+1-ex,x∈(-∞,ln2(,hh(x(在(-∞,0(上單調(diào)遞增,在(0,ln2(上單調(diào)遞減,h(x(≤h(0(=0,∈(-∞,ln2(,則h(x1(=f(x1(-x1+1≤0,所以|x1-x2|=x2-x1≤,又等號不同時(shí)成立,所以|x1-xa-1.(2)構(gòu)造新的函數(shù)h(x(;(1)討論f(x)的單調(diào)性;,+∞). n.解法一:設(shè)g(x)=f(12-x)-f(x)=6ln(12-x)-(12-x)-(6lnx-x(=6ln(12-x)-6lnx+2x-12,x∈所以g(x)在(0,6)上單調(diào)遞減,所以g(x)>g(6)=f(12-6)-f(6)=0,則f(12-x1(>f(x1(=f(x2(,又12-x1,x2∈(6,+∞),且f(x)在(6,+∞)上單調(diào)遞減,2-x1的最小值g(x2(=m>02x=m2-1=m,所以x1=lnm,x2=m+1,x2-x1=m+1-l 令h(m(=m+1-lnm(m>0(,所以h(m(=1-,所以當(dāng)m=時(shí),h(m(有最小值+ln2, 即x2-x1的最小值為+ln2.30.已知函數(shù)f(x)=ex-(x>0),g(x)=lnx.(1)求函數(shù)h(x)=f(x)+g(x)在[1,e]上的最值及其零點(diǎn)個(gè)數(shù);(2)若對于任意的0<x1<x2,均有f(x1(-ag(x1(<f(x2(-ag(x2(,求a的取值范圍.【詳解】(1)易知h(x)=f(x)+g(x)=ex-+lnx(x>0(,所以h(x(在[1,e]上單調(diào)遞增,則h(x(≤h(e(=ee-1,h(x(≥h(1(=-e,(2)設(shè)m(x(=f(x(-ag(x(,則對于任意的0<x1<x2,均有m(x1(<m(x2(,即m(x(在(0,+∞(上單調(diào)遞增,所以m'(x(=f'(x(-ag'(x(=ex+-≥0在(0,+∞(上恒成立,即a≤xex+在(0,+∞(上恒成立,令n(x(=xex+(x>0(,則n'(x(=(x+1(ex-,令u(x(=n'(x(,則u'(x(=(x+2(ex+>0,即n'(x(在(0,+∞(上單調(diào)遞增,又n'(1(=0,則n(x(在(0,1(上單調(diào)遞減,在(1,+∞(上單調(diào)遞增,31.已知函數(shù)f(x(=x2-1+aln(1+x(,(3)若f(x(存在兩個(gè)不同的極值點(diǎn)x1,。x2,x1<x2,且f(x1(<mx2,求實(shí)數(shù)m的取值范f'(x(=0的解不連續(xù),則a≥[-2x(1+x([max=|-2(x+2+max=,令h(x(=,x∈(-1,+∞(,則h'(x(=,x∈(-1,+∞(,所以當(dāng)x∈(-1,0(時(shí),h'(x(>0,則(3)因?yàn)閒(x(存在兩個(gè)不同的極值點(diǎn)x1,。x2,。x1<x2, 所以Δ=4-8a>0,x1+x2=-1,x1x2=,且-1<x1<-,-<x2<0,又由f(x1(<mx2可得m<,1+x1(,令φ(x(=1-x+2xln(1+x,x(=-1+2ln(1+x(+ln(1+xln(1+x(,則(xln(1+x(<0,所以φ(x(在區(qū)間(-1,-上單調(diào)遞減,32.設(shè)函數(shù)f(x)=x(lnx)2-(a+2)xlnx+(a+3)x,a>0.(2)討論f(x)的單調(diào)性;因此曲線y=f(x)在點(diǎn)(e,f(e))處的切線方程為y-2e=(2-a)(x-e),(2)f/(x)=(lnx-2+1-.(x)≥0,f(x)在(0,+∞)單調(diào)遞增.lnx1>0,lnx2>0.-<等價(jià)于(lnx1(2-(a+2)lnx1-(lnx2lnx其中(lnx1(2-(lnx2(2=(lnx1-lnx2((lnx1+lnx2(=a(lnx1-lnx2(..lnx2=1且x1<x2得x2>e,記h(x)=(lnx)2-+1,(x>e),則h/(x)=-=,33.已知函數(shù)f(x(=ex-mx,g(x(=ex(-sinx+cosx+a(≥f(x2(成立,求a的取值范圍.(2)[0,+∞(【詳解】(1)f(x)=ex-mx,f/(x)=ex-m,f(x)在x=0處取得極值,則f/(0)=0,m=1.∴f/(x(=ex-1,當(dāng)f/(x)<0,x<0,f/(x)>0,x>0所以f(x)的減區(qū)間為(-∞,0(,增區(qū)間為(0,+∞(符合題意.(2)由(1)知,函數(shù)f(x(min=f(0(=1?x1≥f(x2(成立等價(jià)于不等式ex(-sinx+cosx+a(≥1在x∈0,時(shí)有解即不等式a≥sinx-cosx+e-x在x∈0,]時(shí)有解...設(shè)F(x(=sinx-cosx+e-x,F(xiàn)/(x(=sinx+cosx-e-x,2[而e-x≤1所以F/(x(≥0恒成立即F(x)在0,|上是增函數(shù),則F(x)min=F(0)=034.已知函數(shù)f(x)=lnx-ax+1(a∈R).且函數(shù)f(x)有兩個(gè)零點(diǎn),【詳解】(1)函數(shù)f(x)的定義域?yàn)?0,+∞),對函數(shù)f(x)求導(dǎo)得f/(x)=-a, 35.已知函數(shù)f(x)=ae-x-x2,g(x)=xex-asinx,其中a∈R1-x2>2【詳解】(1)令f(x)=0,即ae-x-x2=0,即a=x2ex,令h(x)=x2ex-a,h/(x)=(x2+2x)ex,且h(0(=-a<0,h(a)=aea-a=a(ea-1(,ex有唯一解,所以f(x)在(0,+∞)上存在唯一的零點(diǎn).2)=
評論
0/150
提交評論