版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專(zhuān)項(xiàng)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在菱形中,P是對(duì)角線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)P作于點(diǎn)E.于點(diǎn)F.若菱形的周長(zhǎng)為24,面積為24,則的值為()A.4 B. C.6 D.2、如圖是用若干個(gè)全等的等腰梯形拼成的圖形,下列說(shuō)法錯(cuò)誤的是()A.梯形的下底是上底的兩倍 B.梯形最大角是C.梯形的腰與上底相等 D.梯形的底角是3、如圖,已知菱形ABCD的對(duì)角線(xiàn)AC,BD的長(zhǎng)分別為6,8,AE⊥BC,垂足為點(diǎn)E,則AE的長(zhǎng)是()A.5 B.2 C. D.4、順次連接矩形各邊中點(diǎn)得到的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形5、在△ABC中,AD是角平分線(xiàn),點(diǎn)E、F分別是線(xiàn)段AC、CD的中點(diǎn),若△ABD、△EFC的面積分別為21、7,則的值為()A. B. C. D.6、如圖,在正方形有中,E是AB上的動(dòng)點(diǎn),(不與A、B重合),連結(jié)DE,點(diǎn)A關(guān)于DE的對(duì)稱(chēng)點(diǎn)為F,連結(jié)EF并延長(zhǎng)交BC于點(diǎn)G,連接DG,過(guò)點(diǎn)E作⊥DE交DG的延長(zhǎng)線(xiàn)于點(diǎn)H,連接,那么的值為()A.1 B. C. D.27、如圖,在中,,點(diǎn),分別是,上的點(diǎn),,,點(diǎn),,分別是,,的中點(diǎn),則的長(zhǎng)為().A.4 B.10 C.6 D.88、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對(duì)角線(xiàn)AC上,得到折痕AE,則點(diǎn)E到點(diǎn)B的距離為()A. B. C. D.9、菱形ABCD的對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.810、下列條件中,能判定四邊形是正方形的是()A.對(duì)角線(xiàn)相等的平行四邊形 B.對(duì)角線(xiàn)互相平分且垂直的四邊形C.對(duì)角線(xiàn)互相垂直且相等的四邊形 D.對(duì)角線(xiàn)相等且互相垂直的平行四邊形第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,直線(xiàn)l經(jīng)過(guò)正方形ABCD的頂點(diǎn)B,點(diǎn)A,C到直線(xiàn)l的距離分別是1,3,則正方形ABCD的面積是_____.2、如圖,O為坐標(biāo)原點(diǎn),△ABO的兩個(gè)頂點(diǎn)A(6,0),B(6,6),點(diǎn)D在邊AB上,點(diǎn)C在邊OA上,且BD=AC=1,點(diǎn)P為邊OB上的動(dòng)點(diǎn),則PC+PD的最小值為_(kāi)____.3、在平行四邊形ABCD中,若∠A=130°,則∠B=______,∠C=______,∠D=______.4、正方形的一條對(duì)角線(xiàn)長(zhǎng)為4,則這個(gè)正方形面積是_________.5、已知Rt△ABC的周長(zhǎng)是24,斜邊上的中線(xiàn)長(zhǎng)是5,則S△ABC=_____.6、如圖,在正方形ABCD中,AB=2,取AD的中點(diǎn)E,連接EB,延長(zhǎng)DA至F,使EF=EB,以線(xiàn)段AF為邊作正方形AFGH,點(diǎn)H在線(xiàn)段AB上,則的值是_____.7、點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn),△ABC的周長(zhǎng)為24,則△DEF的周長(zhǎng)為_(kāi)_____.8、如圖中,分別是由個(gè)、個(gè)、個(gè)正方形連接成的圖形,在圖中,;在圖中,;通過(guò)以上計(jì)算,請(qǐng)寫(xiě)出圖中______(用含的式子表示)9、如圖,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延長(zhǎng)線(xiàn)上取一點(diǎn)C,使得DC=BD,在直線(xiàn)AD左側(cè)有一動(dòng)點(diǎn)P滿(mǎn)足∠PAD=∠PDB,連接PC,則線(xiàn)段CP長(zhǎng)的最大值為_(kāi)_______.10、如圖,在等腰△OAB中,OA=OB=2,∠OAB=90°,以AB為邊向右側(cè)作等腰Rt△ABC,則OC的長(zhǎng)為_(kāi)_________________.三、解答題(5小題,每小題6分,共計(jì)30分)1、D、分別是不等邊三角形即的邊、的中點(diǎn).是平面上的一動(dòng)點(diǎn),連接、,、分別是、的中點(diǎn),順次連接點(diǎn)、、、.(1)如圖,當(dāng)點(diǎn)在內(nèi)時(shí),求證:四邊形是平行四邊形;(2)若四邊形是菱形,點(diǎn)所在位置應(yīng)滿(mǎn)足什么條件?(直接寫(xiě)出答案,不需說(shuō)明理由.)2、如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫(huà)三角形.(1)在圖1中,畫(huà)一個(gè)三邊長(zhǎng)都是有理數(shù)的直角三角形;(2)在圖2中,畫(huà)一個(gè)以BC為斜邊的直角三角形,使它們的三邊長(zhǎng)都是無(wú)理數(shù)且都不相等;(3)在圖3中,畫(huà)一個(gè)正方形,使它的面積是10.3、如圖所示,在邊長(zhǎng)為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點(diǎn)的一動(dòng)點(diǎn),N是CD上一動(dòng)點(diǎn),且AM+CN=1.(1)證明:無(wú)論M,N怎樣移動(dòng),△BMN總是等邊三角形;(2)求△BMN面積的最小值.4、已知:在中,點(diǎn)、點(diǎn)、點(diǎn)分別是、、的中點(diǎn),連接、.(1)如圖1,若,求證:四邊形為菱形;(2)如圖2,過(guò)作交延長(zhǎng)線(xiàn)于點(diǎn),連接,,在不添加任何輔助線(xiàn)的情況下,請(qǐng)直接寫(xiě)出圖中所有與面積相等的平行四邊形.
5、在△ABC中,AB=AC=x,BC=12,點(diǎn)D,E分別為BC,AC的中點(diǎn),線(xiàn)段BE的垂直平分線(xiàn)交邊BC于點(diǎn)F,(1)當(dāng)x=10時(shí),求線(xiàn)段AD的長(zhǎng).(2)x取何值時(shí),點(diǎn)F與點(diǎn)D重合.(3)當(dāng)DF=1時(shí),求x2的值.-參考答案-一、單選題1、A【解析】【分析】連接BP,通過(guò)菱形的周長(zhǎng)為24,求出邊長(zhǎng),菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長(zhǎng)為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì),解題關(guān)鍵在于添加輔助線(xiàn),通過(guò)面積法得出等量關(guān)系.2、D【解析】【分析】如圖(見(jiàn)解析),先根據(jù)平角的定義可得,再根據(jù)可求出,由此可判斷選項(xiàng);先根據(jù)等邊三角形的判定與性質(zhì)可得,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,然后根據(jù)菱形的判定可得四邊形是菱形,根據(jù)菱形的性質(zhì)可得,最后根據(jù)線(xiàn)段的和差、等量代換可得,由此可判斷選項(xiàng).【詳解】解:如圖,,,,,梯形是等腰梯形,,則梯形最大角是,選項(xiàng)B正確;沒(méi)有指明哪個(gè)角是底角,梯形的底角是或,選項(xiàng)D錯(cuò)誤;如圖,連接,,是等邊三角形,,,點(diǎn)共線(xiàn),,,,四邊形是平行四邊形,,,,,,四邊形是菱形,,,,選項(xiàng)A、C正確;故選:D.【點(diǎn)睛】本題考查了等腰梯形、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握各判定與性質(zhì)是解題關(guān)鍵.3、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長(zhǎng),在Rt△BOC中求出BC,利用菱形面積等于對(duì)角線(xiàn)乘積的一半,也等于BC×AE,可得出AE的長(zhǎng)度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點(diǎn)睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對(duì)角線(xiàn)互相垂直且平分.4、C【解析】【分析】如圖,矩形中,利用三角形的中位線(xiàn)的性質(zhì)證明,再證明四邊形是平行四邊形,再證明從而可得結(jié)論.【詳解】解:如圖,矩形中,分別為四邊的中點(diǎn),,四邊形是平行四邊形,四邊形是菱形.故選C.【點(diǎn)睛】本題考查的是矩形的性質(zhì),菱形的判定,三角形的中位線(xiàn)的性質(zhì),熟練的運(yùn)用三角形的中位線(xiàn)的性質(zhì)解決中點(diǎn)四邊形問(wèn)題是解本題的關(guān)鍵.5、B【解析】【分析】過(guò)點(diǎn)A作△ABC的高,設(shè)為x,過(guò)點(diǎn)E作△EFC的高為,可求出,,再由點(diǎn)E、F分別是線(xiàn)段AC、CD的中點(diǎn),可得出,進(jìn)而求出,再利用角平分線(xiàn)的性質(zhì)可得出的值為即可求解.【詳解】解:過(guò)點(diǎn)A作△ABC的高,設(shè)為x,過(guò)點(diǎn)E作△EFC的高為,∴,∴,,∵點(diǎn)E、F分別是線(xiàn)段AC、CD的中點(diǎn),∴,∴,∵,∴,∴,過(guò)點(diǎn)D作DM⊥AB,DN⊥AC,∵AD為平分線(xiàn),∴DM=DN,∵,∴,即:∴,故選:B.【點(diǎn)睛】本題考查角平分線(xiàn)性質(zhì)定理及三角形中位線(xiàn)的性質(zhì),解題關(guān)鍵是求出.6、B【解析】【分析】作輔助線(xiàn),構(gòu)建全等三角形,證明△DAE≌△ENH,得AE=HN,AD=EN,再說(shuō)明△BNH是等腰直角三角形,可得結(jié)論.【詳解】解:如圖,在線(xiàn)段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵點(diǎn)A關(guān)于直線(xiàn)DE的對(duì)稱(chēng)點(diǎn)為F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴,∴,即=.故選:B.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定定理和性質(zhì)定理,等知識(shí),解決本題的關(guān)鍵是作出輔助線(xiàn),利用正方形的性質(zhì)得到相等的邊和相等的角,證明三角形全等.7、B【解析】【分析】根據(jù)三角形中位線(xiàn)定理得到PD=BF=6,PD∥BC,根據(jù)平行線(xiàn)的性質(zhì)得到∠PDA=∠CBA,同理得到∠PDQ=90°,根據(jù)勾股定理計(jì)算,得到答案.【詳解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵點(diǎn)P,D分別是AF,AB的中點(diǎn),∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故選:B.【點(diǎn)睛】本題考查的是三角形中位線(xiàn)定理、勾股定理,掌握三角形的中位線(xiàn)平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.8、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設(shè)BE=x,在Rt△EFC中利用勾股定理列出方程,通過(guò)解方程可得答案.【詳解】解:矩形ABCD,設(shè)BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點(diǎn)E到點(diǎn)B的距離為:.故選:C.【點(diǎn)睛】本題考查了勾股定理和矩形與折疊問(wèn)題;二次根式的乘法運(yùn)算,利用對(duì)折得到,再利用勾股定理列方程是解本題的關(guān)鍵.9、A【解析】【分析】根據(jù)中位線(xiàn)定理可得對(duì)角線(xiàn)AC的長(zhǎng),再由菱形面積等于對(duì)角線(xiàn)乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點(diǎn),EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì)與中位線(xiàn)定理,熟練掌握中位線(xiàn)定理和菱形面積公式是關(guān)鍵.10、D【解析】【分析】根據(jù)正方形的判定定理進(jìn)行判斷即可.【詳解】解:A、對(duì)角線(xiàn)相等的平行四邊形是矩形,不符合題意;B、對(duì)角線(xiàn)互相平分且垂直的四邊形是菱形,不符合題意;對(duì)角線(xiàn)相等且互相垂直的平行四邊形是正方形,故C選項(xiàng)不符合題意;D選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.二、填空題1、10【解析】【分析】根據(jù)正方形的性質(zhì),結(jié)合題意易求證,,,即可利用“ASA”證明,得出.最后根據(jù)勾股定理可求出,即正方形的面積為10.【詳解】∵四邊形ABCD是正方形,∴,,∴.根據(jù)題意可知:,,∴,,∴在和中,,∴,∴.∵在中,,∴正方形ABCD的面積是10.故答案為:10.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.2、6【解析】【分析】過(guò)點(diǎn)D作DE⊥AB交y軸于點(diǎn)E,交BO于點(diǎn)P,得矩形ACPD,正方形OCPE,此時(shí)PC+PD的值最?。驹斀狻拷猓骸逜(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如圖,過(guò)點(diǎn)D作DE⊥AB交y軸于點(diǎn)E,交BO于點(diǎn)P,∴∠PDA=∠DAC=∠PCA=90°,∴四邊形ACPD是矩形,∴AC=DP,PC=AD,同理可得四邊形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四邊形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此時(shí)PC+PD的值最小,為6.故答案為:6.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì),正方形的判定以及垂線(xiàn)段最短問(wèn)題.3、【解析】【分析】利用平行四邊形的性質(zhì):鄰角互補(bǔ),對(duì)角相等,即可求得答案.【詳解】解:在平行四邊形ABCD中,、是的鄰角,是的對(duì)角,,,故答案為:,,.【點(diǎn)睛】本題主要是考查了平行四邊形的性質(zhì):對(duì)角相等,鄰角互補(bǔ),熟練掌握平行四邊形的性質(zhì),求解決本題的關(guān)鍵.4、8【解析】【分析】正方形邊長(zhǎng)相等設(shè)為,對(duì)角線(xiàn)長(zhǎng)已知,利用勾股定理求解邊長(zhǎng)的平方,即為正方形的面積.【詳解】解:設(shè)邊長(zhǎng)為,對(duì)角線(xiàn)為故答案為:.【點(diǎn)睛】本題考察了正方形的性質(zhì)以及勾股定理.解題的關(guān)鍵在于求解正方形的邊長(zhǎng).5、24【解析】【分析】先根據(jù)直角三角形的性質(zhì)求解,再利用周長(zhǎng)求解,兩邊平方結(jié)合勾股定理可得,利用三角形面積公式求解即可.【詳解】解:如圖Rt△ABC,∠C=90°,點(diǎn)D為AB中點(diǎn),為RtABC斜邊上的中線(xiàn),,,,,,,由,,∴S△ABC=.故答案為:24.【點(diǎn)睛】本題考查的是直角三角形斜邊上的中線(xiàn)的性質(zhì),勾股定理的應(yīng)用,完全平方公式,三角形面積公式,掌握以上知識(shí)是解題的關(guān)鍵.6、【解析】【分析】設(shè),由正方形的性質(zhì)和勾股定理求出的長(zhǎng),可得的長(zhǎng),再求出的長(zhǎng),得出的長(zhǎng),進(jìn)而可得結(jié)果.【詳解】解:設(shè),四邊形為正方形,,,點(diǎn)為的中點(diǎn),,,,,四邊形為正方形,,,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì)以及勾股定理,解題的關(guān)鍵是熟練掌握正方形的性質(zhì),由勾股定理求出的長(zhǎng).7、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點(diǎn),可以判斷DF、FE、DE為三角形中位線(xiàn),利用中位線(xiàn)定理求出DF、FE、DE與AB、BC、CA的長(zhǎng)度關(guān)系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點(diǎn),∴ED、FE、DF為△ABC中位線(xiàn),∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長(zhǎng)=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點(diǎn)睛】本題考查了三角形的中位線(xiàn)定理,根據(jù)中點(diǎn)判斷出中位線(xiàn),再利用中位線(xiàn)定理是解題的基本思路.8、90n【解析】【分析】連接各小正方形的對(duì)角線(xiàn),由圖1中四邊形內(nèi)角和定理化簡(jiǎn)可得:;由圖2中四邊形內(nèi)角和定理化簡(jiǎn)可得:;結(jié)合圖形即可發(fā)現(xiàn)規(guī)律,求得結(jié)果.【詳解】解:連接各小正方形的對(duì)角線(xiàn),如下圖:圖中,,即,圖中,,即,,以此類(lèi)推,,故答案為:.【點(diǎn)睛】題目主要考查根據(jù)規(guī)律列出相應(yīng)代數(shù)式,正方形性質(zhì)等,理解題意,探索發(fā)現(xiàn)規(guī)律是解題關(guān)鍵.9、##【解析】【分析】如圖,取AD的中點(diǎn)O,連接OP、OC,然后求出OP、OC的長(zhǎng),最后根據(jù)三角形的三邊關(guān)系即可解答.【詳解】解:如圖,取AD的中點(diǎn)O,連接OP、OC∵∠PAD=∠PDB,∠PDB+∠ADP=90°,∴∠PAD+∠ADP=90°,即∠APD=90°,∵AO=OD,∴PO=OA=AD,∴∴OP=,∵BD=CD=4,OD=,∴∵PC≤OP+OC,∴PC≤,∴PC的最大值為.故填:.【點(diǎn)睛】本題主要考查了直角三角形斜邊中線(xiàn)的性質(zhì)、勾股定理等知識(shí)點(diǎn),解題的關(guān)鍵在于正確添加常用輔助線(xiàn),進(jìn)而求得OP、OC的長(zhǎng).10、2或2##或【解析】【分析】如圖1,以AB為斜邊作等腰Rt△ABC,根據(jù)等腰直角三角形的性質(zhì)得到∠OAB=∠ABO=45°,∠CAB=∠CBA=45°,∠ACB=90°,推出四邊形AOBC是正方形,根據(jù)勾股定理得到OC=AB;如圖2,以AB為直角邊作等腰Rt△ABC,求得∠ABC=45°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABO=45°,根據(jù)勾股定理得到BC,于是得到結(jié)論.【詳解】解:如圖1,以AB為斜邊作等腰Rt△ABC,∵OA=OB=2,∠OAB=90°,∴∠OAB=∠ABO=45°,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,∠ACB=90°,∴∠AOB=∠OAC=∠ACB=∠CBO=90°,∴四邊形AOBC是正方形,∴OC=AB==2;如圖2,以AB為直角邊作等腰Rt△ABC,∴∠ABC=45°,∵OA=OB=2,∠OAB=90°,∴∠ABO=45°,AB=2,∴∠CBO=90°,∵△ABC是等腰直角三角形,∴BC==4,∴OC=,當(dāng)以AB、BC為直角邊作等腰直角三角形時(shí),與圖2的解法相同;綜上所述,OC的長(zhǎng)為2或2,故答案為:2或2.【點(diǎn)睛】本題考查了勾股定理,等腰直角三角形以及正方形的判定,正確的作出圖形,進(jìn)行分類(lèi)討論是解題的關(guān)鍵.三、解答題1、(1)見(jiàn)解析;(2),且點(diǎn)不在射線(xiàn)、射線(xiàn)上【分析】(1)根據(jù)三角形的中位線(xiàn)定理可證得,DE=GF,即可證得結(jié)論;(2)根據(jù)三角形的中位線(xiàn)定理結(jié)合菱形的判定方法分析即可.【詳解】(1)∵D、E分別是邊AB、AC的中點(diǎn),∴,DE=BC,同理,,GF=BC,∴,DE=GF,∴四邊形DEFG是平行四邊形;(2)點(diǎn)O的位置滿(mǎn)足兩個(gè)要求:AO=BC,且點(diǎn)O不在射線(xiàn)CD、射線(xiàn)BE上.理由如下:連接AO,由(1)得四邊形DEFG是平行四邊形,∵點(diǎn)D、G、F分別是AB、OB、OC的中點(diǎn),∴,,當(dāng)AO=BC時(shí),GF=DF,∴四邊形DGFE是菱形.【點(diǎn)睛】本題主要考查三角形的中位線(xiàn)定理,平行四邊形、菱形的判定,解題的關(guān)鍵是熟練掌握以上知識(shí)點(diǎn).2、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析【分析】(1)如圖,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;(2)如圖,,,利用勾股定理逆定理即可得到△ABC是直角三角形;(3)如圖,,則,∠ABC=90°,即可得到四邊形ABCD是正方形,.【詳解】解:(1)如圖所示,AB=4,BC=3,,∴,∴△ABC是直角三角形;
(2)如圖所示,,∴,∴△ABC是直角三角形;
(3)如圖所示,,,∴,∴∠ABC=90°,∴四邊形ABCD是正方形,∴.
【點(diǎn)睛】本題主要考查了有理數(shù)與無(wú)理數(shù),正方形的判定,勾股定理和勾股定理的逆定理,熟知相關(guān)知識(shí)是解題的關(guān)鍵.3、(1)見(jiàn)解析;(2)△BMN面積的最小值為【分析】(1)連接BD,證明△AMB≌△DNB,則可得BM=BN,∠MBA=∠NBD,由菱形的性質(zhì)易得∠MBN=60゜,從而可證得結(jié)論成立;(2)過(guò)點(diǎn)B作BE⊥MN于點(diǎn)E.【詳解】(1)證明:如圖所示,連接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等邊三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等邊三角形;(2)過(guò)點(diǎn)B作BE⊥MN于點(diǎn)E.設(shè)BM=BN=MN=x,則,故,∴當(dāng)BM⊥AD時(shí),x最小,此時(shí),,.∴△BMN面積的最小值為.【點(diǎn)睛】本題考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),垂線(xiàn)段最短,全等三角形的判定與性質(zhì)等知識(shí),關(guān)鍵是作輔助線(xiàn)證三角形全等.4、(1)證明見(jiàn)詳解;(2)與面積相等的平行四邊形有、、、.【分析】(1)根據(jù)三角形中位線(xiàn)定理可得:,,,,依據(jù)平行四邊形的判定定理可得四邊形DECF為平行四邊形,再由,可得,依據(jù)菱形的判定定理即可證明;(2)根據(jù)三角形中位線(xiàn)定理及平行四邊形的判定定理可得四邊形DEFB、DECF、ADFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得出與各平行四邊形面積之間的關(guān)系,再根據(jù)平
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽省淮北市2025-2026學(xué)年七年級(jí)上學(xué)期期末考試語(yǔ)文試題(含答案)
- 2026年上海市松江區(qū)初三上學(xué)期一模數(shù)學(xué)試卷和參考答案
- 2026黑龍江齊齊哈爾市龍沙區(qū)五龍街道公益性崗位招聘1人考試參考試題及答案解析
- 2026年上半年云南省青少年科技中心招聘人員(3人)參考考試題庫(kù)及答案解析
- 2026廣東惠州市博羅縣市場(chǎng)監(jiān)督管理局招聘編外人員6人考試參考試題及答案解析
- 2026年甘肅省嘉峪關(guān)市人民社區(qū)衛(wèi)生服務(wù)中心招聘?jìng)淇伎荚囶}庫(kù)及答案解析
- 2026北京印鈔有限公司招聘26人考試參考題庫(kù)及答案解析
- 閣樓天窗施工方案(3篇)
- 五四主題活動(dòng)-方案策劃(3篇)
- 2026年上半年云南民族大學(xué)招聘碩士7人備考考試試題及答案解析
- 國(guó)家自然基金形式審查培訓(xùn)
- 2026馬年卡通特色期末評(píng)語(yǔ)(45條)
- NCCN臨床實(shí)踐指南:肝細(xì)胞癌(2025.v1)
- 免租使用協(xié)議書(shū)
- 2025 AHA心肺復(fù)蘇與心血管急救指南
- 2026年九江職業(yè)大學(xué)單招職業(yè)適應(yīng)性測(cè)試題庫(kù)帶答案詳解
- ?;穾?kù)區(qū)風(fēng)險(xiǎn)動(dòng)態(tài)評(píng)估-洞察與解讀
- 激光焊接技術(shù)規(guī)范
- 消防聯(lián)動(dòng)排煙天窗施工方案
- 2025年高考物理 微專(zhuān)題十 微元法(講義)(解析版)
- 2025年國(guó)家能源投資集團(tuán)有限責(zé)任公司校園招聘筆試備考題庫(kù)含答案詳解(新)
評(píng)論
0/150
提交評(píng)論