2025年人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題練習(xí)試卷(詳解版)_第1頁
2025年人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題練習(xí)試卷(詳解版)_第2頁
2025年人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題練習(xí)試卷(詳解版)_第3頁
2025年人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題練習(xí)試卷(詳解版)_第4頁
2025年人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題練習(xí)試卷(詳解版)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,已知,,,是上的兩個(gè)點(diǎn),,,若,,,則的長(zhǎng)為(

)A. B. C. D.2、如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M,連接OM,下列結(jié)論:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正確的個(gè)數(shù)為()A.4 B.3 C.2 D.13、如圖,Rt△ACB中,∠ACB=90°,△ACB的角平分線AD,BE相交于點(diǎn)P,過P作PF⊥AD交BC的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四邊形ABDE=S△ABP;⑤S△APH=S△ADE,其中正確的結(jié)論有(

)個(gè)A.2 B.3 C.4 D.54、如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長(zhǎng)為()A. B. C. D.5、如圖,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,,,則,滿足關(guān)系(

)A. B. C. D.6、如圖是用直尺和圓規(guī)作一個(gè)角等于已知角的示意圖,說明的依據(jù)是(

)A. B. C. D.7、已知,如圖,在△ABC中,D為BC邊上的一點(diǎn),延長(zhǎng)AD到點(diǎn)E,連接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列結(jié)論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結(jié)論個(gè)數(shù)有(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)8、如圖,AB=AD,∠BAO=∠DAO,由此可以得出的全等三角形是()A.≌ B.≌C.≌ D.≌9、如圖,,,要使,直接利用三角形全等的判定方法是A.AAS B.SAS C.ASA D.SSS10、如圖,在中,,D是上一點(diǎn),于點(diǎn)E,,連接,若,則等于(

)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是_____.2、如圖,BE交AC于點(diǎn)M,交CF于點(diǎn)D,AB交CF于點(diǎn)N,,給出的下列五個(gè)結(jié)論中正確結(jié)論的序號(hào)為.①;②;③;④;⑤.3、如圖,已知,,,則等于________.4、如圖,已知AD是△ABC的中線,E是AC上的一點(diǎn),BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,則∠ACB=_____.5、如圖,AB=DC,BF=CE,需要補(bǔ)充一個(gè)條件,就能使△ABE≌△DCF,下面幾個(gè)答案:①AE=DF,②AE∥DF;③AB∥DC,④∠A=∠D.其中正確的是_____.6、如圖,點(diǎn),,在同一直線上,,,,,若線段與線段的長(zhǎng)度之比為,則線段與線段的長(zhǎng)度之比為______.7、如圖,在△ABC中,BD=CD,BE交AD于F,AE=EF,若BE=7CE,,則BF=_______.8、如圖,已知,,添加一個(gè)條件,使,你添加的條件是______(填一個(gè)即可).9、已知:如圖,是上一點(diǎn),平分,,若,則________.(用的代數(shù)式表示)10、如圖,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,則∠C1=______°.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在中,.(1)如圖①所示,直線過點(diǎn),于點(diǎn),于點(diǎn),且.求證:.(2)如圖②所示,直線過點(diǎn),交于點(diǎn),交于點(diǎn),且,則是否成立?請(qǐng)說明理由.2、如圖,在等腰三角形ABC中,∠A=90°,AB=AC=6,D是BC邊的中點(diǎn),點(diǎn)E在線段AB上從B向A運(yùn)動(dòng),同時(shí)點(diǎn)F在線段AC上從點(diǎn)A向C運(yùn)動(dòng),速度都是1個(gè)單位/秒,時(shí)間是t秒(0<t<6),連接DE、DF、EF.(1)請(qǐng)判斷△EDF形狀,并證明你的結(jié)論.(2)以A、E、D、F四點(diǎn)組成的四邊形面積是否發(fā)生變化?若不變,求出這個(gè)值;若變化,用含t的式子表示.3、方格紙上有2個(gè)圖形,你能沿著格線把每一個(gè)圖形都分成完全相同的兩個(gè)部分嗎?請(qǐng)畫出分割線.4、中,,,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),連接,過點(diǎn)作于點(diǎn).(1)如圖1,分別延長(zhǎng),相交于點(diǎn),求證:;(2)如圖2,若平分,,求的長(zhǎng);(3)如圖3,是延長(zhǎng)線上一點(diǎn),平分,試探究,,之間的數(shù)量關(guān)系并說明理由.5、如圖,在△ABC中,∠ACB=90°,用直尺和圓規(guī)在斜邊AB上作一點(diǎn)P,使得點(diǎn)P到點(diǎn)B的距離與點(diǎn)P到邊AC的距離相等.(保留作圖痕跡,不寫作法)-參考答案-一、單選題1、B【解析】【分析】由題意可證可得可求EF的長(zhǎng).【詳解】解:在和中,故選:B.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),熟練運(yùn)用全等三角形的判定是本題的關(guān)鍵.2、A【解析】【分析】由題意易得∠AOC=∠BOD,然后根據(jù)三角形全等的性質(zhì)及角平分線的判定定理可進(jìn)行求解.【詳解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正確;過點(diǎn)O作OE⊥AC于點(diǎn)E,OF⊥BD于點(diǎn)F,BD與OA相交于點(diǎn)H,如圖所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正確;所以正確的個(gè)數(shù)有4個(gè);故選A.【考點(diǎn)】本題主要考查全等三角形的性質(zhì)與判定及角平分線的判定定理,熟練掌握全等三角形的性質(zhì)與判定及角平分線的判定定理是解題的關(guān)鍵.3、B【解析】【分析】①正確.利用三角形內(nèi)角和定理以及角平分線的定義即可解決問題.②正確.證明△ABP≌△FBP,推出PA=PF,再證明△APH≌△FPD,推出PH=PD即可解決問題.③錯(cuò)誤.利用反證法,假設(shè)成立,推出矛盾即可.④錯(cuò)誤,可以證明S四邊形ABDE=2S△ABP.⑤正確.由DH∥PE,利用等高模型解決問題即可.【詳解】解:在△ABC中,AD、BE分別平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分別平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正確∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正確∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正確∵S四邊形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正確若DH平分∠CDE,則∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,這個(gè)顯然與條件矛盾,故③錯(cuò)誤故選B.【考點(diǎn)】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理,三角形的面積等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考常考題型.4、A【解析】【分析】延長(zhǎng)FE交BC于點(diǎn)D,作EG⊥AB、作EH⊥AC,由EF∥AC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠GAE=∠HAE,從而知四邊形BDEG是正方形,再證△GAE≌△HAE、△DCE≌△HCE得AG=AH、CD=CH,設(shè)BD=BG=x,則AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再證△CDF∽△CBA,可得,據(jù)此得出EF=DF-DE=.【詳解】解:如圖,延長(zhǎng)FE交BC于點(diǎn)D,作EG⊥AB于點(diǎn)G,作EH⊥AC于點(diǎn)H,∵EF∥AB、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四邊形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠GAE=∠HAE,∴四邊形BDEG是正方形,在△GAE和△HAE中,∵,∴△GAE≌△HAE(AAS),∴AG=AH,同理△DCE≌△HCE,∴CD=CH,設(shè)BD=BG=x,則AG=AH=6﹣x、CD=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=BG=2,AG=4,∵DF∥AB,∴△DCF∽△BCA,∴,即,解得:,則EF=DF﹣DE=,故選A【考點(diǎn)】本題主要考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)及正方形的判定與性質(zhì),熟練掌握角平分線的性質(zhì)和正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)△△,證得,=,再利用∥BC得到=,再根據(jù)三角形內(nèi)角和定理即可得到結(jié)論.【詳解】∵△△,∴,∠ACB=,∴,=,∵∥BC,∴=,∴,故選:C.【考點(diǎn)】此題考查旋轉(zhuǎn)圖形的性質(zhì),等腰三角形的性質(zhì),兩直線平行內(nèi)錯(cuò)角相等,三角形的內(nèi)角和定理.6、B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D'.【詳解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選B.【考點(diǎn)】本題主要考查了尺規(guī)作圖—作已知角相等的角,解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.7、C【解析】【分析】作AF平分∠BAD.可根據(jù)證△ABF≌△ADF,推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對(duì)的圓周角相等知點(diǎn)A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內(nèi)角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.【詳解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正確;∵AE=AC,∴∠6=∠4+∠7==90°?,∵∠5=∠ADB=∠ABD==90°?,∠1=∠2,∴∠5=∠6=90°?∴CE=CD,∠4=180°?∠5?∠6=180°?2(90°?)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正確;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正確∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④錯(cuò)誤;故選C.【考點(diǎn)】本題主要考查了全等三角形的判定和性質(zhì)、同弦所對(duì)的圓周角相等、三角形內(nèi)角和的相關(guān)知識(shí),靈活運(yùn)用所學(xué)知識(shí)是解題的關(guān)鍵.8、B【解析】【分析】觀察圖形,運(yùn)用SAS可判定△ABO與△ADO全等.【詳解】解:∵AB=AD,∠BAO=∠DAO,AO是公共邊,

∴△ABO≌△ADO(SAS).故選B.【考點(diǎn)】本題考查全等三角形的判定,屬基礎(chǔ)題,比較簡(jiǎn)單.9、B【解析】【分析】根據(jù)平行線性質(zhì)得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根據(jù)全等三角形的判定定理SAS即可推出△ABD≌△CDB,從而推出∠A=∠C,即可得出答案.【詳解】,,在和中,,≌,,故選B.【考點(diǎn)】本題考查了平行線性質(zhì)、全等三角形的判定與性質(zhì)的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)定理是解題的關(guān)鍵.10、C【解析】【分析】證明Rt△BCD≌Rt△BED(HL),由全等三角形的性質(zhì)得出CD=DE,則可得出答案.【詳解】解:,,在和中,,,,,cm,cm.故選:C.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.二、填空題1、4:3【解析】【分析】根據(jù)角平分線的性質(zhì),可得出△ABD的邊AB上的高與△ACD的AC上的高相等,估計(jì)三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對(duì)應(yīng)邊之比.【詳解】∵AD是△ABC的角平分線,∴設(shè)△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,∴h1=h2,∴△ABD與△ACD的面積之比=AB:AC=4:3,故答案為4:3.2、①;②;③;⑤【解析】【分析】①先證明△ABE≌△ACF,然后根據(jù)全等三角形的性質(zhì)即可判定;②利用全等三角形的性質(zhì)即可判定;③根據(jù)ASA即可證明三角形全等;④無法證明該結(jié)論;⑤根據(jù)ASA證明三角形全等即可.【詳解】解:在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,BE=CF,故②正確,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠1=∠2,故①正確,∵△ABE≌△ACF,∴AB=AC,在△CAN和△BAM中,,∴△CAN≌△BAM(ASA),故③正確,CD=DN不能證明成立,故④錯(cuò)誤在△AFN和△AEM中,∴△AFN≌△AEM(ASA),故⑤正確.結(jié)論中正確結(jié)論的序號(hào)為①;②;③;⑤.故答案為①;②;③;⑤.【考點(diǎn)】本題主要考查了三角形全等的判定和性質(zhì),解題的關(guān)鍵是正確尋找全等三角形全等的條件.3、【解析】【分析】根據(jù)提示可找到一組公共邊OP,從而根據(jù)SSS判定△POB≌△POA,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【詳解】在和中,∵,,,,故答案為40°.【考點(diǎn)】本題考查了全等三角形的判定及性質(zhì),熟練掌握基本的性質(zhì)和判定是正確解題的關(guān)鍵.4、100°或100度【解析】【分析】延長(zhǎng)AD到M,使得DM=AD,連接BM,證△BDM≌△CDA(SAS),得得到BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再證△BFM是等腰三角形,求出∠MBF的度數(shù),即可解決問題.【詳解】解:如圖,延長(zhǎng)AD到M,使得DM=AD,連接BM,在△BDM和△CDA中,,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°﹣∠M﹣∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF﹣∠EBC=100°,∴∠C=∠DBM=100°,故答案為:100°.【考點(diǎn)】本題考查全等三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.5、①③.【解析】【分析】先求出BE=CF,根據(jù)平行線的性質(zhì)得出∠AEB=∠DFC,再根據(jù)全等三角形的判定定理推出即可.【詳解】∵BF=CE,∴BF+EF=CE+EF,即BE=CF,①在△ABE和△DCF中,,∴△ABE≌△DCF(SSS),故①正確;②∵AE∥DF,∴∠AEB=∠DFC,根據(jù)AB=CD,BE=CF和∠AEB=∠DFC不能推出△ABE≌△DCF,故②錯(cuò)誤;③∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),故③正確;④根據(jù)AB=CD,BE=CF和∠A=∠D不能推出△ABE≌△DCF,故④錯(cuò)誤.故答案為:①③.【考點(diǎn)】本題考查了全等三角形的判定問題,掌握全等三角形的性質(zhì)以及判定定理是解題的關(guān)鍵.6、或【解析】【分析】根據(jù)平行線的性質(zhì)得到CE⊥BC,根據(jù)余角的性質(zhì)得到∠ACB=∠E,根據(jù)全等三角形的性質(zhì)得到CD=AB,BC=CE,等量代換即可得到結(jié)論.【詳解】解:∵AB∥EC,AB⊥BC,∴CE⊥BC,∴∠B=∠DCE=90°,∵AC⊥DE,∴∠ACD+∠CDE=∠CDE+∠E=90°,∴∠ACB=∠E,∵AC=DE,∴△ABC≌△DCE(AAS),∴CD=AB,BC=CE,∵線段AB與線段CE的長(zhǎng)度之比為5:8,∴CD:BC=5:8,∴線段BD與線段DC的長(zhǎng)度之比為3:5,故答案為:3:5.【考點(diǎn)】本題考查了平行線的性質(zhì),全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.7、或【解析】【分析】延長(zhǎng)AD至G,使DG=AD,連接BG,可證明,則BG=AC,,根據(jù)AE=EF,得到,可證出,即得出AC=BF,從而得出BF的長(zhǎng).【詳解】解:如圖,延長(zhǎng)AD至G,使DG=AD,連接BG,在和中,∴∴BG=AC,,又∵AE=EF,∴,又∵,∴,∴,∴BG=BF,∴AC=BF,又∵BE=7CE,AE=,∴BF+EF=,即BF+=,解得BF=.故答案為:【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),證明線段相等,一般轉(zhuǎn)化為證明三角形全等,正確地作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.8、(答案不唯一)【解析】【分析】此題是一道開放型的題目,答案不唯一,先根據(jù)∠BCE=∠ACD求出∠BCA=∠DCE,再根據(jù)全等三角形的判定定理SAS推出即可.【詳解】解:添加的條件是CB=CE,理由是:∵∠BCE=∠ACD,∴∠BCE+∠ECA=∠ACD+∠ECA,∴∠BCA=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),故答案為:CB=CE(答案不唯一).【考點(diǎn)】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL等.9、【解析】【分析】過點(diǎn)D分別作DE⊥AB,DF⊥AC,根據(jù)角平分線的性質(zhì)得到DE=DF,根據(jù)表示出DE的長(zhǎng)度,進(jìn)而得到DF的長(zhǎng)度,然后即可求出的值.【詳解】如圖,過點(diǎn)D分別作DE⊥AB,DF⊥AC,∵平分,∴DE=DF,∵,∴,∴∴,故答案為:.【考點(diǎn)】此題考查了角平分線的性質(zhì)定理,三角形面積的表示方法,解題的關(guān)鍵是根據(jù)題意正確作出輔助線.10、30【解析】【分析】本題實(shí)際上是全等三角形的性質(zhì)以及根據(jù)三角形內(nèi)角和等于180°來求角的度數(shù).【詳解】∵△ABC≌△A1B1C1,∴∠C1=∠C,又∵∠C=180°-∠A-∠B=180°-110°-40°=30°,∴∠C1=∠C=30°.故答案為30.【考點(diǎn)】本題考查了全等三角形的性質(zhì);解答時(shí),除必備的知識(shí)外,還應(yīng)將條件和所求聯(lián)系起來,即將所求的角與已知角通過全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來.三、解答題1、(1)見解析;(2)仍然成立,理由見解析【解析】【分析】(1)首先根據(jù)同角的余角相等得到,然后證明,然后根據(jù)全等三角形對(duì)應(yīng)邊相等得到,,然后通過線段之間的轉(zhuǎn)化即可證明;(2)首先根據(jù)三角形內(nèi)角和定理得到,然后證明,根據(jù)全等三角形對(duì)應(yīng)邊相等得到,最后通過線段之間的轉(zhuǎn)化即可證明.【詳解】證明:(1)∵,,∴,∴,∵,∴,∴,在和中,,∴,∴,,∵,∴;(2)仍然成立,理由如下:∵,∵,∴,在和中,,∴,∴,,∵,∴.【考點(diǎn)】此題考查了全等三角形的性質(zhì)和判定,同角的與相等,三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是根據(jù)同角的余角相等或三角形內(nèi)角和定理得到.2、(1)△EDF為等腰直角三角形,證明見解析;(2)四邊形AEDF面積不變,9.【解析】【分析】(1)連接AD,利用等腰直角三角形的性質(zhì)根據(jù)SAS證明△BDE≌△ADF,即可得到結(jié)論;(2)根據(jù)(1)得到S△BDE=S△ADF,推出S四邊形AEDF=S△ADF+S△ADE=S△ABD=S△ABC,根據(jù)公式計(jì)算即可得到答案.【詳解】解:(1)△EDF為等腰直角三角形,理由如下:連接AD,∵AB=AC,∠BAC=90°,點(diǎn)D是BC中點(diǎn),∴AD=BD=CD=BC,AD平分∠BAC,∴∠B=∠C=∠BAD=∠CAD=45°,∵點(diǎn)E、F速度都是1個(gè)單位秒,時(shí)間是t秒,∴BE=AF,又∵∠B=∠DAF=45°,AD=BD,∴△BDE≌△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論