版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》同步練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、已知:如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線(xiàn)上,弦CD交AB于E,連接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,過(guò)E作弦GF⊥BC交圓與G、F兩點(diǎn),連接CF、BG.則下列結(jié)論:①CD⊥AB;②PC是⊙O的切線(xiàn);③OD∥GF;④弦CF的弦心距等于BG.則其中正確的是()A.①②④ B.③④ C.①②③ D.①②③④2、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個(gè)圓錐的底面和側(cè)面,則圓錐的表面積為(
)A. B. C. D.3、如圖,在四邊形ABCD中,則AB=(
)A.4 B.5 C. D.4、已知中,,,,點(diǎn)P為邊AB的中點(diǎn),以點(diǎn)C為圓心,長(zhǎng)度r為半徑畫(huà)圓,使得點(diǎn)A,P在⊙C內(nèi),點(diǎn)B在⊙C外,則半徑r的取值范圍是(
)A. B. C. D.5、有一個(gè)圓的半徑為5,則該圓的弦長(zhǎng)不可能是(
)A.1 B.4 C.10 D.116、已知⊙O的半徑等于3,圓心O到點(diǎn)P的距離為5,那么點(diǎn)P與⊙O的位置關(guān)系是()A.點(diǎn)P在⊙O內(nèi) B.點(diǎn)P在⊙O外 C.點(diǎn)P在⊙O上 D.無(wú)法確定7、以原點(diǎn)O為圓心的圓交x軸于A、B兩點(diǎn),交y軸的正半軸于點(diǎn)C,D為第一象限內(nèi)⊙O上的一點(diǎn),若∠DAB=25°,則∠OCD=(
).A.50° B.40° C.70° D.30°8、已知圓的半徑為扇形的圓心角為,則扇形的面積為(
)A. B. C. D.9、下列圖形為正多邊形的是()A. B. C. D.10、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長(zhǎng)是(
)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)25°得到,EF交BC于點(diǎn)N,連接AN,若,則__________.2、如圖,在⊙O中,是⊙O的直徑,,點(diǎn)是點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn),是上的一動(dòng)點(diǎn),下列結(jié)論:①;②;③;④的最小值是10.上述結(jié)論中正確的個(gè)數(shù)是_________.3、如圖,在中,,,,將繞順時(shí)針旋轉(zhuǎn)后得,將線(xiàn)段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得線(xiàn)段,分別以,為圓心,、長(zhǎng)為半徑畫(huà)弧和弧,連接,則圖中陰影部分面積是________.4、如圖,直線(xiàn)、相交于點(diǎn),半徑為1cm的⊙的圓心在直線(xiàn)上,且與點(diǎn)的距離為8cm,如果⊙以2cm/s的速度,由向的方向運(yùn)動(dòng),那么_________秒后⊙與直線(xiàn)相切.5、如圖,四邊形是正方形,曲線(xiàn)是由一段段90度的弧組成的.其中:的圓心為點(diǎn)A,半徑為;的圓心為點(diǎn)B,半徑為;的圓心為點(diǎn)C,半徑為;的圓心為點(diǎn)D,半徑為;…的圓心依次按點(diǎn)A,B,C,D循環(huán).若正方形的邊長(zhǎng)為1,則的長(zhǎng)是_________.6、如圖,正方形ABCD的邊長(zhǎng)為2a,E為BC邊的中點(diǎn),的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點(diǎn)F,則E、F間的距離為.7、如圖,正五邊形ABCDE內(nèi)接于⊙O,點(diǎn)F在上,則∠CFD=_____度.8、如圖,邊長(zhǎng)相等的正五邊形和正六邊形拼接在一起,則∠ABC的度數(shù)為_(kāi)_______.9、如圖,在⊙O中,,,則圖中陰影部分的面積是_________.(結(jié)果保留)10、如圖所示,AB、AC為⊙O的兩條弦,延長(zhǎng)CA到點(diǎn)D,AD=AB,若∠ADB=35°,則∠BOC=________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,是的直徑,點(diǎn)是上一點(diǎn),點(diǎn)是延長(zhǎng)線(xiàn)上一點(diǎn),,是的弦,.(1)求證:直線(xiàn)是的切線(xiàn);(2)若,求的半徑;(3)若于點(diǎn),點(diǎn)為上一點(diǎn),連接,,,請(qǐng)找出,,之間的關(guān)系,并證明.2、如圖,AB為⊙O的直徑,C、D為⊙O上的兩個(gè)點(diǎn),==,連接AD,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線(xiàn)于點(diǎn)E.(1)求證:DE是⊙O的切線(xiàn).(2)若直徑AB=6,求AD的長(zhǎng).3、如圖,已知等邊△ABC內(nèi)接于☉O,BD為內(nèi)接正十二邊形的一邊,CD=5cm,求☉O的半徑R.4、如圖,PA、PB分別切⊙O于A、B,連接PO與⊙O相交于C,連接AC、BC,求證:AC=BC.5、在平面直角坐標(biāo)系中,對(duì)于點(diǎn),給出如下定義:當(dāng)點(diǎn)滿(mǎn)足時(shí),稱(chēng)點(diǎn)Q是點(diǎn)P的等和點(diǎn).已知點(diǎn).(1)在,,中,點(diǎn)P的等和點(diǎn)有______;(2)點(diǎn)A在直線(xiàn)上,若點(diǎn)P的等和點(diǎn)也是點(diǎn)A的等和點(diǎn),求點(diǎn)A的坐標(biāo);(3)已知點(diǎn)和線(xiàn)段MN,對(duì)于所有滿(mǎn)足的點(diǎn)C,線(xiàn)段MN上總存在線(xiàn)段PC上每個(gè)點(diǎn)的等和點(diǎn).若MN的最小值為5,直接寫(xiě)出b的取值范圍.-參考答案-一、單選題1、A【解析】【分析】連接BD、OC、AG、AC,過(guò)O作OQ⊥CF于Q,OZ⊥BG于Z,求出∠ABC=∠ABD,從而有弧AC=弧AD,由垂徑定理的推論即可判斷①的正誤;由CD⊥PB可得到∠P+∠PCD=90°,結(jié)合∠P=∠DCO、等邊對(duì)等角的知識(shí)等量代換可得到∠PCO=90°,據(jù)此可判斷②的正誤;假設(shè)OD∥GF成立,則可得到∠ABC=30°,判斷由已知條件能否得到∠ABC的度數(shù)即可判斷③的正誤;求出CF=AG,根據(jù)垂徑定理和三角形中位線(xiàn)的知識(shí)可得到CQ=OZ,通過(guò)證明△OCQ≌△BOZ可得到OQ=BZ,結(jié)合垂徑定理即可判斷④.【詳解】連接BD、OC、AG,過(guò)O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直徑,∴CD⊥AB,∴①正確;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切線(xiàn),∴②正確;假設(shè)OD∥GF,則∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知沒(méi)有給出∠B=30°,∴③錯(cuò)誤;∵AB是直徑,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正確.故選A.【考點(diǎn)】本題是圓的綜合題,考查了垂徑定理及其推論,切線(xiàn)的判定,等腰三角形的性質(zhì),平行線(xiàn)的性質(zhì),全等三角形的判定與性質(zhì).解答本題的關(guān)鍵是熟練掌握?qǐng)A的有關(guān)知識(shí)點(diǎn).2、B【解析】【分析】設(shè)圓錐的底面的半徑為rcm,則DE=2rcm,利用圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng)得到2πr,解方程求出r,然后求得直徑即可.【詳解】解:設(shè)圓錐的底面的半徑為rcm,則AE=BF=6-2r根據(jù)題意得2πr,解得r=1,側(cè)面積=,底面積=所以圓錐的表面積=,故選:B.【考點(diǎn)】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算.解題思路:解決此類(lèi)問(wèn)題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:(1)圓錐的母線(xiàn)長(zhǎng)等于側(cè)面展開(kāi)圖的扇形半徑;(2)圓錐的底面周長(zhǎng)等于側(cè)面展開(kāi)圖的扇形弧長(zhǎng).正確對(duì)這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.3、D【解析】【分析】延長(zhǎng)AD,BC交于點(diǎn)E,則∠E=30°,先在Rt△CDE中,求得CE的長(zhǎng),然后在Rt△ABE中,根據(jù)∠E的正切函數(shù)求得AB的長(zhǎng)【詳解】如圖,延長(zhǎng)AD,BC交于點(diǎn)E,則∠E=30°,在Rt△CDE中,CE=2CD=6(30°銳角所對(duì)直角邊等于斜邊的一半),∴BE=BC+CE=8,在Rt△ABE中,AB=BE·tanE=8×=.故選D.【考點(diǎn)】本題考查了解直角三角形,特殊角的三角函數(shù)值,解此題的關(guān)鍵在于構(gòu)造一個(gè)直角三角形,然后利用銳角三角函數(shù)進(jìn)行解答.4、D【解析】【分析】根據(jù)勾股定理,得AB=5,由P為AB的中點(diǎn),得CP=,要使點(diǎn)A,P在⊙C內(nèi),r>3,r<4,從而確定r的取值范圍.【詳解】∵點(diǎn)A在⊙C內(nèi),∴r>3,∵點(diǎn)B在⊙C外,∴r<4,∴,故選:D.【考點(diǎn)】本題考查了點(diǎn)和圓的位置關(guān)系,利用數(shù)形結(jié)合思想是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)圓的半徑為5,可得到圓的最大弦長(zhǎng)為10,即可求解.【詳解】∵半徑為5,∴直徑為10,∴最長(zhǎng)弦長(zhǎng)為10,則不可能是11.故選:D.【考點(diǎn)】本題主要考查了圓的基本性質(zhì),理解圓的直徑是圓的最長(zhǎng)的弦是解題的關(guān)鍵.6、B【解析】【分析】根據(jù)d,r法則逐一判斷即可.【詳解】解:∵r=3,d=5,∴d>r,∴點(diǎn)P在⊙O外.故選:B.【考點(diǎn)】本題考查了點(diǎn)與圓的位置關(guān)系,熟練掌握d,r法則是解題的關(guān)鍵.7、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點(diǎn)】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,難度適中.8、B【解析】【分析】扇形面積公式為:利用公式直接計(jì)算即可得到答案.【詳解】解:圓的半徑為扇形的圓心角為,故選:【考點(diǎn)】本題考查的是扇形的面積的計(jì)算,掌握扇形的面積的計(jì)算公式是解題的關(guān)鍵.9、D【解析】【分析】根據(jù)正多邊形的定義:各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形可得答案.【詳解】根據(jù)正多邊形的定義,得到D中圖形是正五邊形.故選D.【考點(diǎn)】本題考查了正多邊形,關(guān)鍵是掌握正多邊形的定義.10、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點(diǎn)】本題考查了直角三角形的性質(zhì),垂徑定理等知識(shí)點(diǎn),能求出CE=DE是解此題的關(guān)鍵.二、填空題1、102.5°【解析】【分析】先根據(jù)旋轉(zhuǎn)的性質(zhì)得到,,得到點(diǎn)A、N、F、C共圓,再利用,根據(jù)平角的性質(zhì)即可得到答案;【詳解】解:如圖,AF與CB相交于點(diǎn)O,連接CF,根據(jù)旋轉(zhuǎn)的性質(zhì)得到:AC=AF,,,,∴點(diǎn)A、N、F、C共圓,∴,又∵點(diǎn)A、N、F、C共圓,∴,∴(平角的性質(zhì)),故答案為:102.5°【考點(diǎn)】本題主要考查了旋轉(zhuǎn)的性質(zhì)、平角的性質(zhì)、點(diǎn)共圓的判定,掌握平移的性質(zhì)是解題的關(guān)鍵;2、3【解析】【分析】①根據(jù)點(diǎn)是點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn)可知,進(jìn)而可得;②根據(jù)一條弧所對(duì)的圓周角等于圓心角的一半即可得結(jié)論;③根據(jù)等弧對(duì)等角,可知只有當(dāng)和重合時(shí),,;④作點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn),連接,DF,此時(shí)的值最短,等于的長(zhǎng),然后證明DF是的直徑即可得到結(jié)論.【詳解】解:,點(diǎn)是點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn),,,①正確;,∴②正確;的度數(shù)是60°,的度數(shù)是120°,∴只有當(dāng)和重合時(shí),,∴只有和重合時(shí),,③錯(cuò)誤;作關(guān)于的對(duì)稱(chēng)點(diǎn),連接,交于點(diǎn),連接交于點(diǎn),此時(shí)的值最短,等于的長(zhǎng).連接,并且弧的度數(shù)都是60°,是的直徑,即,∴當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值最小,最小值是10,∴④正確.故答案為:3.【考點(diǎn)】本題考查了圓的綜合知識(shí),涉及圓周角、圓心角、弧、弦的關(guān)系、最短距離的確定等,掌握?qǐng)A的基本性質(zhì)并靈活運(yùn)用是解題關(guān)鍵.3、【解析】【分析】作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積計(jì)算即可得到答案.【詳解】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴,由旋轉(zhuǎn)得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,,∴△DHE≌△BOA(AAS),∴DH=OB=1,,∴陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,故答案為:.【考點(diǎn)】本題考查的是扇形面積的計(jì)算、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì),掌握扇形的面積公式和旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.4、3或5【解析】【分析】分類(lèi)討論:當(dāng)點(diǎn)P在當(dāng)點(diǎn)P在射線(xiàn)OA時(shí)⊙P與CD相切,過(guò)P作PE⊥CD與E,根據(jù)切線(xiàn)的性質(zhì)得到PE=1cm,再利用含30°的直角三角形三邊的關(guān)系得到OP=2PE=2cm,則⊙P的圓心在直線(xiàn)AB上向右移動(dòng)了(8-2)cm后與CD相切,即可得到⊙P移動(dòng)所用的時(shí)間;當(dāng)點(diǎn)P在射線(xiàn)OB時(shí)⊙P與CD相切,過(guò)P作PE⊥CD與F,同前面一樣易得到此時(shí)⊙P移動(dòng)所用的時(shí)間.【詳解】當(dāng)點(diǎn)P在射線(xiàn)OA時(shí)⊙P與CD相切,如圖,過(guò)P作PE⊥CD與E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圓心在直線(xiàn)AB上向右移動(dòng)了(8-2)cm后與CD相切,∴⊙P移動(dòng)所用的時(shí)間==3(秒);當(dāng)點(diǎn)P在射線(xiàn)OB時(shí)⊙P與CD相切,如圖,過(guò)P作PE⊥CD與F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圓心在直線(xiàn)AB上向右移動(dòng)了(8+2)cm后與CD相切,∴⊙P移動(dòng)所用的時(shí)間==5(秒).故答案為3或5.【考點(diǎn)】本題考查直線(xiàn)與圓的位置關(guān)系:直線(xiàn)與有三種位置關(guān)系(相切、相交、相離).也考查了切線(xiàn)的性質(zhì).解題關(guān)鍵是熟練掌握以上性質(zhì).5、【解析】【分析】曲線(xiàn)是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,到,,再計(jì)算弧長(zhǎng).【詳解】解:由圖可知,曲線(xiàn)是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,,,……,,,故的半徑為,的弧長(zhǎng)=.故答案為:.【考點(diǎn)】此題主要考查了弧長(zhǎng)的計(jì)算,弧長(zhǎng)的計(jì)算公式:,找到每段弧的半徑變化規(guī)律是解題關(guān)鍵.6、a.【解析】【分析】作DE的中垂線(xiàn)交CD于G,則G為的圓心,H為的圓心,連接EF,GH,交于點(diǎn)O,連接GF,F(xiàn)H,HE,EG,依據(jù)勾股定理可得GE=FG=a,根據(jù)四邊形EGFH是菱形,四邊形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【詳解】如圖,作DE的中垂線(xiàn)交CD于G,則G為的圓心,同理可得,H為的圓心,連接EF,GH,交于點(diǎn)O,連接GF,F(xiàn)H,HE,EG,設(shè)GE=GD=x,則CG=2a-x,CE=a,Rt△CEG中,(2a-x)2+a2=x2,解得x=a,∴GE=FG=a,同理可得,EH=FH=a,∴四邊形EGFH是菱形,四邊形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE=,∴EF=a,故答案為a.【考點(diǎn)】本題主要考查了正方形的性質(zhì)以及相交兩圓的性質(zhì),相交兩圓的連心線(xiàn)(經(jīng)過(guò)兩個(gè)圓心的直線(xiàn)),垂直平分兩圓的公共弦.注意:在習(xí)題中常常通過(guò)公共弦在兩圓之間建立聯(lián)系.7、36.【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問(wèn)題.【詳解】如圖,連接OC,OD.∵五邊形ABCDE是正五邊形,∴∠COD==72°,∴∠CFD=∠COD=36°,故答案為:36.【考點(diǎn)】本題考查了正多邊形和圓、圓周角定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí).8、24°【解析】【分析】根據(jù)正五邊形的內(nèi)角和和正六邊形的內(nèi)角和公式求得正五邊形的每個(gè)內(nèi)角為108°和正六邊形的每個(gè)內(nèi)角為120°,然后根據(jù)周角的定義和等腰三角形性質(zhì)可得結(jié)論.【詳解】解:由題意得:正六邊形的每個(gè)內(nèi)角都等于120°,正五邊形的每個(gè)內(nèi)角都等于108°∴∠BAC=360°-120°-108°=132°∵AB=AC∴∠ACB=∠ABC=故答案是:.【考點(diǎn)】考查了正多邊形的內(nèi)角與外角、等腰三角形的性質(zhì),熟練掌握正五邊形的內(nèi)角和正六邊形的內(nèi)角求法是解題的關(guān)鍵.9、【解析】【分析】由,根據(jù)圓周角定理得出,根據(jù)S陰影=S扇形AOB-可得出結(jié)論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點(diǎn)】本題主要考查圓周角定理、扇形的面積計(jì)算,根據(jù)題意求得三角形與扇形的面積是解答此題的關(guān)鍵.10、140°【解析】【分析】在等腰中,根據(jù)三角形的外角性質(zhì)可求出外角的度數(shù);而是同弧所對(duì)的圓周角和圓心角,可根據(jù)圓周角和圓心角的關(guān)系求出的度數(shù).【詳解】△ABD中,AB=AD,則:
∴∴故答案為【考點(diǎn)】考查圓周角定理,在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于圓心角的一半.三、解答題1、(1)見(jiàn)解析;(2)3;(3),理由見(jiàn)解析【解析】【分析】(1)先求出∠BAD=120°,再求出∠OAB,進(jìn)而得出∠OAD=90°,即可得出結(jié)論;(2)先判斷出△AOC是等邊三角形,得出AC=OC,再判斷出AC=CD,即可得出結(jié)論;(3)先判斷出∠CAP=∠CEM,進(jìn)而得出△ACP≌△ECM(SAS),進(jìn)而得出CM=CP,∠APC=∠M=30°,再判斷出,即可得出結(jié)論.【詳解】(1)證明:如圖,連接,,,,,,,,,點(diǎn)在上,∴直線(xiàn)是的切線(xiàn);(2)解:如圖1,連接,由(1)知,,,,是等邊三角形,,,,,,即的半徑為3;(3),理由:如圖,,,連接,延長(zhǎng)至,使,連接,,為的直徑,,四邊形是的內(nèi)接四邊形,,,,,過(guò)點(diǎn)作于,,在中,,,,,,,即.【考點(diǎn)】此題是圓的綜合題,主要考查了切線(xiàn)的判定和性質(zhì),等邊三角形的判定和勾股定理,構(gòu)造出直角三角形是解本題的關(guān)鍵.2、(1)見(jiàn)解析;(2)3【解析】【分析】(1)連接OD,根據(jù)已知條件得到∠BOD=180°=60°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到結(jié)論;(2)連接BD,根據(jù)圓周角定理得到∠ADB=90°,解直角三角形即可得到結(jié)論.【詳解】(1)證明:連接OD,∵,∴∠BOD=180°=60°,∵,∴∠EAD=∠DAB=BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切線(xiàn);(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=AB=3,∴AD==3.【考點(diǎn)】本題考查了切線(xiàn)的證明,及線(xiàn)段長(zhǎng)度的計(jì)算,熟知圓的性質(zhì)及切線(xiàn)的證明方法,以及含30°角的直角三角形的特點(diǎn)是解題的關(guān)鍵.3、5.【解析】【詳解】試題分析:首先連接OB,OC,OD,由等邊△ABC內(nèi)接于⊙O,BD為內(nèi)接正十二邊形的一邊,可求得∠BOC,∠BOD的度數(shù),繼而證得△COD是等腰直角三角形,繼而求得答案.試題解析:連接OB、OC、OD.∵等邊△ABC內(nèi)接于⊙O,BD為內(nèi)接正十二邊形的一邊,∴∠BOC=×360°=120°,∠BOD=×360°=30°.∴∠COD=∠BOC-∠BOD=90°.∵OC=OD,∴∠OCD=45°.∴OC=CD·cos45°=5×=5(cm).∴⊙O的半徑R=5cm.【考點(diǎn)】本題考查了正多邊形與圓以及等腰直角三角形性質(zhì),正確地添加輔助線(xiàn)是解題的關(guān)鍵,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4、證明見(jiàn)解析【解析】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州市天河區(qū)金燕幼兒園2025年12月編外教輔人員招聘?jìng)淇碱}庫(kù)及一套完整答案詳解
- 廣州市規(guī)劃和自然資源局花都區(qū)分局及下屬事業(yè)單位2025年公開(kāi)招聘護(hù)林員備考題庫(kù)及答案詳解1套
- 廣西憑祥產(chǎn)業(yè)園區(qū)管理委員會(huì)2026年春季公開(kāi)招聘輔助崗人員備考題庫(kù)及一套完整答案詳解
- 廣西南寧昇智人力資源服務(wù)有限公司2025年度第50期招聘?jìng)淇碱}庫(kù)(南寧市青秀區(qū)融媒體中心)完整答案詳解
- 廣西旅發(fā)集團(tuán)廣西自貿(mào)區(qū)醫(yī)院管理有限公司2025年12月招聘?jìng)淇碱}庫(kù)及一套參考答案詳解
- 廣西欽州市教育系統(tǒng)2026年“欽聚英才”浦北縣專(zhuān)場(chǎng)集中招聘急需緊缺人才備考題庫(kù)及完整答案詳解1套
- 慶陽(yáng)市市直事業(yè)單位2026年公開(kāi)引進(jìn)急需緊缺和高層次人才備考題庫(kù)完整參考答案詳解
- 延安大學(xué)2026年人事代理人員招聘?jìng)淇碱}庫(kù)及參考答案詳解一套
- 2026年機(jī)器人集成公司安全管控設(shè)備分類(lèi)存放與管理制度
- 2026年環(huán)保公司應(yīng)付賬款管理制度
- 2022輸電線(xiàn)路“三跨”設(shè)計(jì)經(jīng)驗(yàn)分享
- 《集成電路制造工藝項(xiàng)目化實(shí)踐》 課件 項(xiàng)目9 轉(zhuǎn)塔式設(shè)備芯片測(cè)試工藝
- 2025至2030年中國(guó)搗固鎬數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 《臨床護(hù)理技術(shù)規(guī)范 第6部分:成人危重癥患者身體約束(報(bào)批稿)》編制說(shuō)明
- 醫(yī)保主任述職報(bào)告
- 英語(yǔ)-浙江省杭州八縣市2024學(xué)年高二第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題和答案
- 公務(wù)用車(chē)車(chē)輛安全培訓(xùn)課件
- 一件代發(fā)采購(gòu)合同協(xié)議書(shū)范本
- 牛津譯林版七年級(jí)英語(yǔ)上冊(cè)詞組背誦版
- 足療店消防安全制度
- 房屋自愿放棄繼承協(xié)議
評(píng)論
0/150
提交評(píng)論