強化訓練-人教版8年級數(shù)學下冊《平行四邊形》定向攻克試題(含詳細解析)_第1頁
強化訓練-人教版8年級數(shù)學下冊《平行四邊形》定向攻克試題(含詳細解析)_第2頁
強化訓練-人教版8年級數(shù)學下冊《平行四邊形》定向攻克試題(含詳細解析)_第3頁
強化訓練-人教版8年級數(shù)學下冊《平行四邊形》定向攻克試題(含詳細解析)_第4頁
強化訓練-人教版8年級數(shù)學下冊《平行四邊形》定向攻克試題(含詳細解析)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:12、如圖,四邊形和四邊形都是矩形.若,則等于()A. B. C. D.3、如圖,的對角線交于點O,E是CD的中點,若,則的值為()A.2 B.4 C.8 D.164、如圖,正方形ABCD中,AB=12,點E在邊BC上,BE=EC,將△DCE沿DE對折至△DFE,延長EF交邊AB于點G,連接DG、BF,給出以下結(jié)論:①△DAG≌△DFG;②BG=2AG;③BF//DE;④S△BEF=.其中所有正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.45、菱形ABCD的對角線AC,BD相交于點O,E,F(xiàn)分別是AD,CD邊上的中點,連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.86、如圖,矩形ABCD中,AB=3,AD=4,將矩形ABCD折疊后,A點的對應點落在CD邊上,EF為折痕,A和EF交于G點,當AG+BG取最小值時,此時EF的值為()A. B.3 C.2 D.57、在數(shù)學活動課上,老師和同學們判斷一個四邊形門框是否為矩形.下面是某個合作小組的4位同學擬定的方案,其中正確的是()A.測量對角線是否互相平分 B.測量兩組對邊是否分別相等C.測量其內(nèi)角是否均為直角 D.測量對角線是否垂直8、如圖,陰影部分是將一個菱形剪去一個平行四邊形后剩下的,要想知道陰影部分的周長,需要測量一些線段的長,這些線段可以是()A.AF B.AB C.AB與BC D.BC與CD9、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點E,若∠1=40°,則∠2的度數(shù)為()A.25° B.20° C.15° D.10°10、如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得點A,C之間的距離為6cm,點B,D之間的距離為8cm,則紙條的寬為()A.5cm B.4.8cm C.4.6cm D.4cm第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、在菱形ABCD中,∠B=60°,BC=2cm,M為AB的中點,N為BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DE,CE,當△CDE為等腰三角形時,線段BN的長為_____.2、如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.3、如圖,在平行四邊形ABCD中,AB=4,BC=5,以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是_____.4、如圖,矩形ABCD中,AB=9,AD=12,點M在對角線BD上,點N為射線BC上一動點,連接MN,DN,且∠DNM=∠DBC,當DMN是等腰三角形時,線段BN的長為___.5、如圖,將長方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.6、如圖,在矩形ABCD中,AB=3,BC=4,點P是對角線AC上一點,若點P、A、B組成一個等腰三角形時,△PAB的面積為___________.7、已知一直角三角形的兩直角邊長分別為6和8,則斜邊上中線的長度是_____.8、一個三角形三邊長之比為4∶5∶6,三邊中點連線組成的三角形的周長為30cm,則原三角形最大邊長為_________cm.9、如圖,在長方形ABCD中,.在DC上找一點E,沿直線AE把折疊,使D點恰好落在BC上,設(shè)這一點為F,若的面積是54,則的面積=______________.10、點D、E、F分別是△ABC三邊的中點,△ABC的周長為24,則△DEF的周長為______.三、解答題(5小題,每小題6分,共計30分)1、如圖,在?ABCD中,對角線AC,BD交于點O,E是BD延長線上一點,且△ACE是等邊三角形.(1)求證:四邊形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四邊形ABCD的面積.2、如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.

(1)在方格紙中畫出以AB為對角線的正方形AEBF,點E、F在小正方形的頂點上;(2)在方格紙中畫出以CD為斜邊的等腰直角三角形CDM,連接BM,并直接寫出BM的長.3、如圖,在矩形中,為對角線.(1)用尺規(guī)完成以下作圖:在上找一點,使,連接,作的平分線交于點;(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,若,求的度數(shù).4、如圖,在中,,D是邊上的一點,過D作交于點E,,連接交于點F.(1)求證:是的垂直平分線;(2)若點D為的中點,且,求的長.5、△ABC為等邊三角形,AB=4,AD⊥BC于點D,E為線段AD上一點,AE=.以AE為邊在直線AD右側(cè)構(gòu)造等邊△AEF.連結(jié)CE,N為CE的中點.

(1)如圖1,EF與AC交于點G,①連結(jié)NG,求線段NG的長;②連結(jié)ND,求∠DNG的大?。?)如圖2,將△AEF繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為α.M為線段EF的中點.連結(jié)DN、MN.當30°<α<120°時,猜想∠DNM的大小是否為定值,并證明你的結(jié)論.-參考答案-一、單選題1、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補.2、A【解析】【分析】由題意可得∠AGF=∠DAB=90°,由平行線的性質(zhì)可得,即可得∠DGF=70°.【詳解】解:∵四邊形ABCD和四邊形AEFG都是矩形∴∠AGF=∠DAB=90°,DC//AB∴∴故選:A.【點睛】本題考查了矩形的性質(zhì),熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.3、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點E是CD的中點,∴S△DOE=S△COD=4,故選:B.【點睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.4、D【解析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定Rt△ADG≌Rt△FDG;②再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,即可判斷;③由△BEF是等腰三角形,證明∠EBF=∠DEC,;④結(jié)合①可得AG=GF,根據(jù)等高的兩個三角形的面積的比等于底與底的比即可求出三角形BEF的面積.【詳解】解:①由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,∴Rt△ADG≌Rt△FDG(HL),故①正確;②∵正方形邊長是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12?x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12?x)2,解得:x=4,∴AG=GF=4,BG=8,BG=2AG,故②正確;③∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF//DE,故③正確;④∵S△GBE=BE?BG=×6×8=24,∵GF=AG=4,EF=BE=6,∴,∴S△BEF=S△GBE=×24=,故④正確.綜上可知正確的結(jié)論的是4個.故選:D.【點睛】本題考查了圖形的翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線的判定,三角形的面積計算,有一定的難度.5、A【解析】【分析】根據(jù)中位線定理可得對角線AC的長,再由菱形面積等于對角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點睛】本題主要考查菱形的性質(zhì)與中位線定理,熟練掌握中位線定理和菱形面積公式是關(guān)鍵.6、A【解析】【分析】過點作于,由翻折的性質(zhì)知點為的中點,則為的中位線,可知在上運動,當取最小值時,此時與重合,利用勾股定理和相似求出的長即可解決問題.【詳解】解:過點作于,將矩形折疊后,點的對應點落在邊上,點為的中點,為的中位線,在上運動,在上運動,當取最小值時,此時與重合,,,,,,,,,在和中,,,,,故選:A.【點睛】本題主要考查了矩形的性質(zhì),翻折的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,解題的關(guān)鍵是證明在上運動.7、C【解析】【分析】根據(jù)矩形的判定:(1)四個角均為直角;(2)對邊互相平行且相等;(3)對角線相等且平分,據(jù)此即可判斷結(jié)果.【詳解】解:A、根據(jù)矩形的對角線相等且平分,故錯誤;B、對邊分別相等只能判定四邊形是平行四邊形,故錯誤;C、矩形的四個角都是直角,故正確;D、矩形的對角線互相相等且平分,所以垂直與否與矩形的判定無關(guān),故錯誤.故選:C.【點睛】本題主要考查的是矩形的判定方法,熟練掌握矩形的判定是解題的關(guān)鍵.8、A【解析】【分析】如圖,延長,交于點,證明,,再利用菱形的性質(zhì)證明:陰影部分的周長,從而可得答案.【詳解】解:如圖,延長,交于點,四邊形是平行四邊形,,,四邊形是菱形,,陰影部分的周長,故需要測量的長度,故選A.【點睛】本題考查的是平行四邊形的性質(zhì),菱形的性質(zhì),證明陰影部分的周長是解本題的關(guān)鍵.9、D【解析】【分析】根據(jù)矩形的性質(zhì),可得∠ABD=40°,∠DBC=50°,根據(jù)折疊可得∠DBC′=∠DBC=50°,最后根據(jù)∠2=∠DBC′?∠DBA進行計算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點睛】本題考查了長方形性質(zhì),平行線性質(zhì),折疊性質(zhì),角的有關(guān)計算的應用,關(guān)鍵是求出∠DBC′和∠DBA的度數(shù).10、B【解析】【分析】由題意作AR⊥BC于R,AS⊥CD于S,根據(jù)題意先證出四邊形ABCD是平行四邊形,再由AR=AS得平行四邊形ABCD是菱形,再根據(jù)勾股定理求出AB,最后利用菱形ABCD的面積建立關(guān)系得出紙條的寬AR的長.【詳解】解:作AR⊥BC于R,AS⊥CD于S,連接AC、BD交于點O.由題意知:AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形,∵兩個矩形等寬,∴AR=AS,∵AR?BC=AS?CD,∴BC=CD,∴平行四邊形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3cm,OB=4cm,∴AB==5cm,∵平行四邊形ABCD是菱形,∴AB=BC=5cm,∴菱形ABCD的面積,即,解得:cm.故選:B.【點睛】本題主要考查菱形的判定以及勾股定理等知識,解題的關(guān)鍵是掌握一組鄰邊相等的平行四邊形是菱形以及菱形的面積等于對角線相乘的一半.二、填空題1、cm或2cm【解析】【分析】分兩種情況:①如圖1,當DE=DC時,連接DM,作DG⊥BC于G,由菱形的性質(zhì)得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=120°,證出D、E、N三點共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如圖2,當CE=CD上,CE=CD=AD,此時點E與A重合,N與點C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2(含CE=DE這種情況).【詳解】解:分兩種情況,①如圖1,當DE=DC時,連接DM,作DG⊥BC于G,∵四邊形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M為AB的中點,∴AM=BM=1,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三點共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②當CE=CD時,CE=CD=AD,此時點E與A重合,N與點C重合,如圖2所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2cm(符合題干要求);綜上所述,當△CDE為等腰三角形時,線段BN的長為cm或2cm;故答案為cm或2cm.【點睛】本題考查了折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、三點共線、勾股定理、直角三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,熟練掌握并靈活運用是解題的關(guān)鍵.2、####【解析】【分析】根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.5cm,故答案為:2.5.【點睛】本題考查了矩形的性質(zhì)的應用,勾股定理,三角形中位線的應用,解本題的關(guān)鍵是求出OD長及證明EF=OD.3、1【解析】【分析】根據(jù)基本作圖,得到EC是∠BCD的平分線,由AB∥CD,得到∠BEC=∠ECD=∠ECB,從而得到BE=BC,利用線段差計算即可.【詳解】根據(jù)基本作圖,得到EC是∠BCD的平分線,∴∠ECD=∠ECB,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案為:1.【點睛】本題考查了角的平分線的尺規(guī)作圖,等腰三角形的判定,平行線的性質(zhì),平行四邊形的性質(zhì),熟練掌握尺規(guī)作圖,靈活運用等腰三角形的判定定理是解題的關(guān)鍵.4、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當NM=ND時,∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當DM=DN時,此時M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當MN=MD時,∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設(shè)BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當DMN是等腰三角形時,線段BN的長為15或24或.故答案為:15或24或.【點睛】本題考查了矩形的性質(zhì)、等腰三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學會用分類討論的思想思考問題,注意不能漏解.5、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.6、或或3【解析】【分析】過B作BM⊥AC于M,根據(jù)矩形的性質(zhì)得出∠ABC=90°,根據(jù)勾股定理求出AC,根據(jù)三角形的面積公式求出高BM,分為三種情況:①AB=BP=3,②AB=AP=3,③AP=BP,分別畫出圖形,再求出面積即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,由勾股定理得:,有三種情況:①當AB=BP=3時,如圖1,過B作BM⊥AC于M,S△ABC=,,解得:,∵AB=BP=3,BM⊥AC,∴,∴AP=AM+PM=,∴△PAB的面積=;②當AB=AP=3時,如圖2,∵BM=,∴△PAB的面積S=;③作AB的垂直平分線NQ,交AB于N,交AC于P,如圖3,則AP=BP,BN=AN=,∵四邊形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴,∴△PAB的面積;即△PAB的面積為或或3.故答案為:或或3.【點睛】本題主要是考查了矩形的性質(zhì)、等腰三角形的判定以及勾股定理求邊長,熟練掌握矩形的性質(zhì),利用等腰三角形的判定,分成三種情況討論,是解決本題的關(guān)鍵.7、5【解析】【分析】直角三角形中,斜邊長為斜邊中線長的2倍,所以求斜邊上中線的長求斜邊長即可.【詳解】解:在直角三角形中,兩直角邊長分別為6和8,則斜邊長==10,∴斜邊中線長為×10=5,故答案為5.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半,勾股定理,根據(jù)勾股定理求得斜邊長是解題的關(guān)鍵.8、24【解析】【分析】由三邊長之比得到三角形的三條中位線之比,再由這三條中位線組成的三角形周長求出三中位線長,推出邊長,再比大小判斷即可.【詳解】∵如圖,H、I、J分別為BC,AC,AB的中點∴,,又∵∴∵AB:AC:BC=4:5:6,即BC邊最長∴故填24.【點睛】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半.9、6【解析】【分析】根據(jù)三角形的面積求出BF,利用勾股定理列式求出AF,再根據(jù)翻折變換的性質(zhì)可得AD=AF,然后求出CF,設(shè)DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面積公式解答即可.【詳解】解:∵四邊形ABCD是矩形∴AB=CD=9,BC=AD∵?AB?BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.設(shè)DE=x,則CE=9-x,EF=DE=x.則x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面積=×4×3=6.【點睛】本題考查了翻折變換的性質(zhì),矩形的性質(zhì),三角形的面積,勾股定理,熟記各性質(zhì)并利用勾股定理列出方程是解題的關(guān)鍵.10、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點,可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長度關(guān)系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點,∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點睛】本題考查了三角形的中位線定理,根據(jù)中點判斷出中位線,再利用中位線定理是解題的基本思路.三、解答題1、(1)見解析;(2)正方形ABCD的面積為【分析】(1)由等邊三角形的性質(zhì)得EO⊥AC,即BD⊥AC,再根據(jù)對角線互相垂直的平行四邊形是菱形,即可得出結(jié)論;(2)證明菱形ABCD是正方形,即可得出答案.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AO=OC,∵△ACE是等邊三角形,∴EO⊥AC(三線合一),即BD⊥AC,∴?ABCD是菱形;(2)解:∵△ACE是等邊三角形,∴∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵?ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD是正方形,∴正方形ABCD的面積=AB2=a2.【點睛】本題考查了菱形的判定與性質(zhì)、正方形的判定與性質(zhì)、平行四邊形的性質(zhì)、等邊三角形的性質(zhì)等知識,證明四邊形ABCD為菱形是解題的關(guān)鍵.2、(1)見詳解;(2)見詳解.【分析】(1)根據(jù)勾股定理求出AB的長,以AB為對角線的正方形AEBF,根據(jù)正方形的性質(zhì)求出正方形邊長AE=,根據(jù)勾股定理構(gòu)造直角三角形橫1豎3,或橫3豎1,利用點A平移找到點E,點F即可完成求解;(2)根據(jù)勾股定理求出CD的長,△CDM為等腰直角三角形,設(shè)CM=DM=x,再利用勾股定理,根據(jù)勾股定理構(gòu)造橫1豎2,或橫2豎1直角三角形,利用點C平移得到點M,即可得到答案.【詳解】(1)根據(jù)勾股定理AB=,∵以AB為對角線的正方形AEBF,∴S正方形=,∵正方形AEBF的邊長為AE,∴AE2=10,∴AE=,根據(jù)勾股定理可知構(gòu)造橫1豎3或橫3豎1的直角三角形作線段AE、AF,點A向下平移1格,再向左平移3格得點E,點A向右平移1格,再向下平移3格得點F,∴連結(jié)AE,BE,BF,AF,則正方形ABEF作圖如下:(2)根據(jù)勾股定理,∵△CDM為等腰直角三角形,設(shè)CM=DM=x,根據(jù)勾股定理,即,解得,∴CM=DM=,根據(jù)勾股定理構(gòu)造橫1豎2,或橫2豎1直角三角形作線段CM、DM,點C向右移動2格,再向上移動1格得點M,連結(jié)CM,DM,則△CDM為所求如圖.

【點睛】本題考查了正方形性質(zhì)、正方形面積,邊長,等腰直角三角形、腰長,勾股定理,一元二次方程,平移;解題的關(guān)鍵是熟練掌握正方形性質(zhì)、等腰直角三角形性質(zhì),勾股定理,一元二次方程,平移,從而完成求解.3、(1)圖形見解析;(2)【分析】(1)利用尺規(guī)根據(jù)題意即可完成作圖;

(2)結(jié)合(1)根據(jù)等腰三角形的性質(zhì)和三角形外角定理可得的度數(shù).【詳解】(1)如圖,點E和點F即為所求;

(2)∵,∠ABD=68°,

∴∠AEB=∠AEB=68°∴∠EAB=180°-68°-68°=44°,

∴∠EAD=90°-44°=46°,

∵AF平分∠DAE,

∴∠FAE=∠DAE=23°,

∴【點睛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論