重難點(diǎn)解析人教版8年級數(shù)學(xué)上冊《軸對稱》必考點(diǎn)解析試題(含詳細(xì)解析)_第1頁
重難點(diǎn)解析人教版8年級數(shù)學(xué)上冊《軸對稱》必考點(diǎn)解析試題(含詳細(xì)解析)_第2頁
重難點(diǎn)解析人教版8年級數(shù)學(xué)上冊《軸對稱》必考點(diǎn)解析試題(含詳細(xì)解析)_第3頁
重難點(diǎn)解析人教版8年級數(shù)學(xué)上冊《軸對稱》必考點(diǎn)解析試題(含詳細(xì)解析)_第4頁
重難點(diǎn)解析人教版8年級數(shù)學(xué)上冊《軸對稱》必考點(diǎn)解析試題(含詳細(xì)解析)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》必考點(diǎn)解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,有一張直角三角形紙片,兩直角邊AC=5cm,BC=10cm,將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則△ACD的周長為()A.10cm B.12cm C.15cm D.20cm2、如圖,先將正方形紙片對折,折痕為MN,再把B點(diǎn)折疊在折痕MN上,折痕為AE,點(diǎn)B在MN上的對應(yīng)點(diǎn)為H,沿AH和DH剪下,這樣剪得的△ADH中(

)A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD3、如圖,已知AB=AC=BD,那么∠1與∠2之間的關(guān)系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180° D.3∠1-∠2=180°4、下列圖形中,是軸對稱圖形的是()A. B.C. D.5、如圖,的垂直平分線交于點(diǎn),若,則的度數(shù)是(

)A.25° B.20° C.30° D.15°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、正五邊形ABCDE中,對角線AC、BD相較于點(diǎn)P,則∠APB的度數(shù)為_______.2、如圖,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線與AD相交于點(diǎn)P,連接PC,若△ABC的面積為2cm2,則△BPC的面積為___cm2.3、已知:如圖,在中,點(diǎn)在邊上,,則_______度.4、如圖,在中,,,垂直平分,垂足為Q,交于點(diǎn)P.按以下步驟作圖:①以點(diǎn)A為圓心,以適當(dāng)?shù)拈L為半徑作弧,分別交邊于點(diǎn)D,E;②分別以點(diǎn)D,E為圓心,以大于的長為半徑作弧,兩弧相交于點(diǎn)F;⑤作射線.若與的夾角為,則________°.5、如圖,過邊長為16的等邊△ABC的邊AB上的一點(diǎn)P,作PE⊥AC于點(diǎn)E,點(diǎn)Q為BC延長線上一點(diǎn),當(dāng)PA=CQ時,連接PQ交AC邊于點(diǎn)D,則DE的長為_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、在①,②這兩個條件中選擇其中一個,補(bǔ)充在下面的問題中,請完成問題的解答.問題:如圖,中,,點(diǎn)D,E在邊BC上(不與點(diǎn)B,C重合)連結(jié)AD,AE.若______,求證:.2、如圖,在ABC中,AB=AC=2,∠B=40°,點(diǎn)D在線段BC上運(yùn)動(點(diǎn)D不與點(diǎn)B、C重合),連接AD,作∠ADE=40°,DE交線段AC于點(diǎn)E.(1)當(dāng)∠BDA=115°時,∠EDC=______°,∠AED=______°;(2)線段DC的長度為何值時,△ABD≌△DCE,請說明理由;(3)在點(diǎn)D的運(yùn)動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求∠BDA的度數(shù);若不可以,請說明理由.3、在中,,在的外部作等邊三角形,E為的中點(diǎn),連接并延長交于點(diǎn)F,連接.(1)如圖1,若,求和的度數(shù);(2)如圖2,的平分線交于點(diǎn)M,交于點(diǎn)N,連接.①補(bǔ)全圖2;②若,求證:.4、如圖,在中,AB=AC,D是BA延長線上一點(diǎn),E是AC的中點(diǎn),連接DE并延長,交BC于點(diǎn)M,∠DAC的平分線交DM于點(diǎn)F.求證:AF=CM.5、在邊長為1個單位長度的小正方形網(wǎng)格中,建立平面直角坐標(biāo)系,已知點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C的坐標(biāo)為(3,1)(1)寫出點(diǎn)A和點(diǎn)B的坐標(biāo),并在圖中畫出與△ABC關(guān)于x軸對稱的圖形△;(2)寫出點(diǎn)B1的坐標(biāo),連接CB1,則線段CB1的長為.(直接寫出得數(shù))-參考答案-一、單選題1、C【解析】【分析】根據(jù)圖形翻折變換的性質(zhì)得出AD=BD,故AC+(CD+AD)=AC+BC,由此即可得出結(jié)論.【詳解】∵△ADE由△BDE翻折而成,∴AD=BD.∵AC=5cm,BC=10cm,∴△ACD的周長=AC+CD+AD=AC+BC=15cm.故選C.【考點(diǎn)】本題考查了翻折變換,熟知圖形翻折不變性的性質(zhì)是解答此題的關(guān)鍵.2、B【解析】【分析】翻折后的圖形與翻折前的圖形是全等圖形,利用折疊的性質(zhì),正方形的性質(zhì),以及圖形的對稱性特點(diǎn)解題.【詳解】解:由圖形的對稱性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故選B.【考點(diǎn)】本題主要考查翻折圖形的性質(zhì),解決本題的關(guān)鍵是利用圖形的對稱性把所求的線段進(jìn)行轉(zhuǎn)移.3、D【解析】【分析】根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠B=180°-2∠1=∠C,根據(jù)三角形的外角性質(zhì)可得∠C=∠1-∠2,進(jìn)一步即得答案.【詳解】解:∵AB=AC=BD,∴∠BAD=∠1,∠B=∠C,∴∠B=180°-2∠1=∠C,∵∠C=∠1-∠2,∴180°-2∠1=∠1-∠2,∴3∠1-∠2=180°.故選:D.【考點(diǎn)】本題考查了等腰三角形的性質(zhì)、三角形的內(nèi)角和定理和三角形的外角性質(zhì)等知識,屬于基本題型,熟練掌握上述知識是解題的關(guān)鍵.4、C【解析】【分析】依據(jù)軸對稱圖形的定義逐項(xiàng)分析即可得出C選項(xiàng)正確.【詳解】解:因?yàn)檫x項(xiàng)A、B、D中的圖形都不能通過沿某條直線折疊直線兩旁的部分能達(dá)到完全重合,所以它們不符合軸對稱圖形的定義和要求,因此選項(xiàng)A、B、D中的圖形都不是軸對稱圖形,而C選項(xiàng)中的圖形沿上下邊中點(diǎn)的連線折疊后,折痕的左右兩邊能完全重合,因此符合軸對稱圖形的定義和要求,因此C選項(xiàng)中的圖形是軸對稱圖形,故選:C.【考點(diǎn)】本題主要考查了軸對稱圖形的定義,學(xué)生需要掌握軸對稱圖形的定義內(nèi)容,理解軸對稱圖形的特征,方能解決問題找對圖形,同時也考查了學(xué)生對圖形的感知力和空間想象的能力.5、D【解析】【分析】根據(jù)等要三角形的性質(zhì)得到∠ABC,再根據(jù)垂直平分線的性質(zhì)求出∠ABD,從而可得結(jié)果.【詳解】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°-65°×2=50°,∵M(jìn)N垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC-∠ABD=15°,故選D.【考點(diǎn)】本題考查了等腰三角形的性質(zhì)和垂直平分線的性質(zhì),解題的關(guān)鍵是掌握相應(yīng)的性質(zhì)定理.二、填空題1、72°##72度【解析】【分析】根據(jù)正五邊形的性質(zhì),可得,AB=BC=CD,從而得到∠ACB=∠CBD=36°,再由三角形外角的性質(zhì),即可求解.【詳解】解:∵多邊形ABCDE是正五邊形,∴,AB=BC=CD,∴∠ACB=∠CBD=36°,∴∠APB=∠ACB+∠CBD=72°.故答案為:72°【考點(diǎn)】本題主要考查了正多邊形的性質(zhì),等腰三角形的性質(zhì),三角形外角的性質(zhì),熟練掌握正多邊形的性質(zhì),等腰三角形的性質(zhì),三角形外角的性質(zhì)是解題的關(guān)鍵.2、1【解析】【分析】根據(jù)等腰三角形三線合一的性質(zhì)即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案.【詳解】∵BD=BA,BP是∠ABC的角平分線,∴,∴和是等底同高的三角形,和是等底同高的三角形,∴,.∵,,∴.故答案為:1.【考點(diǎn)】本題考查等腰三角形的性質(zhì).掌握等腰三角形“三線合一”是解答本題的關(guān)鍵.3、40【解析】【分析】根據(jù)等邊對等角得到,再根據(jù)三角形外角的性質(zhì)得到,故,由三角形的內(nèi)角和即可求解的度數(shù).【詳解】解:∵,∴,∴,∵,∴,∴,故答案為:40.【考點(diǎn)】本題考查等腰三角形的性質(zhì)、三角形外角的性質(zhì)、三角形的內(nèi)角和,熟練掌握幾何知識并靈活運(yùn)用是解題的關(guān)鍵.4、55°.【解析】【分析】根據(jù)直角三角形兩銳角互余得∠BAC=70°,由角平分線的定義得∠2=35°,由線段垂直平分線可得△AQM是直角三角形,故可得∠1+∠2=90°,從而可得∠1=55°,最后根據(jù)對頂角相等求出.【詳解】如圖,∵△ABC是直角三角形,∠C=90°,,,,∵是的平分線,,是的垂直平分線,是直角三角形,,,∵∠α與∠1是對頂角,.故答案為:55°.【考點(diǎn)】此題考查了直角三角形兩銳角互余,角平分線的定義,線段垂直平分線的性質(zhì),對頂角相等等知識,熟練掌握相關(guān)定義和性質(zhì)是解題的關(guān)鍵.5、8【解析】【分析】根據(jù)題意,作出合適的輔助線,然后根據(jù)全等三角形的判定和性質(zhì)可以求得DE的長,本題得以解決.【詳解】解:作QF⊥AC,交AC的延長線于點(diǎn)F,則∠QFC=90°,∵△ABC是等邊三角形,PE⊥AC于點(diǎn)E,∴∠A=∠ACB=60°,∠PEA=90°,∴∠PEA=∠QFC,∵∠ACB=∠QCF,∴∠A=∠QCF,在△PEA和△QFC中,,∴△PEA≌△QFC(AAS),∴AE=CF,PE=QF,∵AC=AE+EC=16,∴EF=CF+EC=16,∵∠PED=90°,∠QFD=90°,∴∠PED=∠QFD,在△PED和△QFD中,,∴△PED≌△QFD(AAS),∴ED=FD,∵ED+FD=EF=16,∴DE=8,故答案為:8.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)、等邊三角形的性質(zhì),解答本題的關(guān)鍵是明確題意,利用等三角形的判定與性質(zhì)和數(shù)形結(jié)合的思想解答.三、解答題1、①或②【解析】【分析】選擇條件①,可得到,根據(jù)等角的補(bǔ)角相等可推出,再利用得到,則可根據(jù)“AAS”可判斷,從而得到;選擇條件②,可得到,利用得到,則可根據(jù)“ASA”可判斷,從而得到.【詳解】證明:選擇條件①的證明為:∵,∴,∴,又∵,∴,在和中,,(),∴;選擇條件②的證明為:∵,∴,又∵,∴,在和中,,()∴.故答案為:①或②【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)∶全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.本題也考查了等腰三角形的性質(zhì)、等角的補(bǔ)角相等的知識.2、(1)25°,65°;(2)2,理由見詳解;(3)可以,110°或80°.【解析】【分析】(1)利用鄰補(bǔ)角的性質(zhì)和三角形內(nèi)角和定理解題;(2)當(dāng)DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)當(dāng)∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形.【詳解】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°-∠B-∠ADB=180°-115°-40°=25°,∵AB=AC,∴∠C=∠B=40°,∵∠EDC=180°-∠ADB-∠ADE=25°,∴∠DEC=180°-∠EDC-∠C=115°,∴∠AED=180°-∠DEC=180°-115°=65°;(2)當(dāng)DC=2時,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);(3)當(dāng)∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形,∵∠BDA=110°時,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形狀是等腰三角形;∵當(dāng)∠BDA的度數(shù)為80°時,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形狀是等腰三角形.【考點(diǎn)】本題主要考查學(xué)生對等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形外角的性質(zhì)等知識點(diǎn)的理解和掌握,此題涉及到的知識點(diǎn)較多,綜合性較強(qiáng),但難度不大,屬于基礎(chǔ)題.3、(1),;(2)①作圖見解析;②見解析【解析】【分析】(1)結(jié)合等腰三角形和等邊三角形的性質(zhì),可得∠ABD=∠ADB,從而求解出角度后,再計(jì)算∠BDF即可;(2)①根據(jù)尺規(guī)作圖作角平分線的方法畫出的平分線即可;②設(shè)∠ACM=∠BCM=α,由AB=AC,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN≌△ADN(SSS),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=60°+2α,在△ABC中,根據(jù)∠BAC+∠ACB+∠ABC=180°,構(gòu)建方程求出α,再證明∠MNB=∠MBN即可解決問題.【詳解】(1)∵,為等邊三角形,∴,,,∵,∴,∴,又∵E為的中點(diǎn),∴由“三線合一”知,,∴;(2)①如圖所示:利用尺規(guī)作圖的方法得到CP,交于點(diǎn)M,交于點(diǎn)N;②如圖所示,連接,∵平分,∴設(shè),∵,∴,在等邊三角形中,∵為的中點(diǎn),∴,∴,∴,∴,在和中,∴,∴,,∴,在中,,∴,∴,∴,∴,∴,∴.【考點(diǎn)】本題考查全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用各類圖形的性質(zhì)進(jìn)行綜合分析.4、證明見解析.【解析】【分析】先根據(jù)等腰三角形的性質(zhì)可得,再根據(jù)三角形的外角性質(zhì)可得,然后根據(jù)角平分線的定義得,最后根據(jù)三角形全等的判定定理與性質(zhì)即可得證.【詳解】∵,∴,∴,∵AF是的平分線,∴,∵E是AC的中點(diǎn),∴,在和中,,∴,∴.【考點(diǎn)】本題考查了等腰三角形的性質(zhì)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論