解析卷-人教版9年級數學上冊《圓》專項練習試卷(解析版含答案)_第1頁
解析卷-人教版9年級數學上冊《圓》專項練習試卷(解析版含答案)_第2頁
解析卷-人教版9年級數學上冊《圓》專項練習試卷(解析版含答案)_第3頁
解析卷-人教版9年級數學上冊《圓》專項練習試卷(解析版含答案)_第4頁
解析卷-人教版9年級數學上冊《圓》專項練習試卷(解析版含答案)_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版9年級數學上冊《圓》專項練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、已知⊙O的半徑為4,點O到直線m的距離為d,若直線m與⊙O公共點的個數為2個,則d可?。ǎ〢.5 B.4.5 C.4 D.02、在平面直角坐標系中,⊙O的半徑為2,點A(1,)與⊙O的位置關系是(

)A.在⊙O上 B.在⊙O內 C.在⊙O外 D.不能確定3、如圖,⊙O的半徑為5,弦AB=8,P是弦AB上的一個動點(不與A,B重合),下列符合條件的OP的值是()A.6.5 B.5.5 C.3.5 D.2.54、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個圓錐的側面和底面,則的長為(

)A. B. C. D.5、如圖,是的直徑,弦于點,,,則的長為(

)A.4 B.5 C.8 D.166、如圖,AB為的直徑,C,D為上的兩點,若,則的度數為(

)A. B. C. D.7、如圖,在中,,,,以點為圓心,為半徑的圓與相交于點,則的長為(

)A.2 B. C.3 D.8、有一個圓的半徑為5,則該圓的弦長不可能是(

)A.1 B.4 C.10 D.119、已知扇形的圓心角為,半徑為,則弧長為(

)A. B. C. D.10、下列4個說法中:①直徑是弦;②弦是直徑;③任何一條直徑所在的直線都是圓的對稱軸;④弧是半圓;正確的有(

)A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、已知圓錐的高為4cm,母線長為5cm,則圓錐的側面積為_____cm2.2、如圖1是臺灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點,DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時,最低點為C,且呈拋物線形,拋物線與弧MN交于點F,G.若△CDE是等腰直角三角形,且點C,F到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.3、如圖,在矩形中,是邊上一點,連接,將矩形沿翻折,使點落在邊上點處,連接.在上取點,以點為圓心,長為半徑作⊙與相切于點.若,,給出下列結論:①是的中點;②⊙的半徑是2;③;④.其中正確的是________.(填序號)4、如圖,在中,點是的中點,連接交弦于點,若,,則的長是______.5、如圖,一個底面半徑為3的圓錐,母線,D為的中點,一只螞蟻從點A出發(fā),沿著圓錐的側面爬行到D,則螞蟻爬行的最短路程為______.6、如圖,AB是⊙O的弦,點C在過點B的切線上,且OC⊥OA,OC交AB于點P,已知∠OAB=22°,則∠OCB=__________.7、如圖,在⊙O中,的度數等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數等于________度.8、數學課上,老師讓學生用尺規(guī)作圖畫Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.小明的作法如圖所示,你認為小明這種作法中判斷∠ACB是直角的依據是_____.9、某圓的周長是12.56米,那么它的半徑是______________,面積是__________.10、如圖,在中,的半徑為點是邊上的動點,過點作的一條切線(其中點為切點),則線段長度的最小值為____.三、解答題(5小題,每小題6分,共計30分)1、已知圓弧的半徑為15厘米,圓弧的長度為,求圓心角的度數.2、如圖,,分別切、于點、.切于點,交于點與不重合).(1)用直尺和圓規(guī)作出;(保留作圖痕跡,不寫作法)(2)若半徑為1,,求的長.3、已知:如圖,△ABC中,AB=AC,AB>BC.求作:線段BD,使得點D在線段AC上,且∠CBD=∠BAC.作法:①以點A為圓心,AB長為半徑畫圓;②以點C為圓心,BC長為半徑畫弧,交⊙A于點P(不與點B重合);③連接BP交AC于點D.線段BD就是所求作的線段.(1)使用直尺和圓規(guī),依作法補全圖形(保留作圖痕跡);(2)完成下面的證明.證明:連接PC.∵AB=AC,∴點C在⊙A上.∵點P在⊙A上,∴∠CPB=∠BAC.()(填推理的依據)∵BC=PC,∴∠CBD=.()(填推理的依據)∴∠CBD=∠BAC.4、如圖,在△ABC中,AB=AC,∠BAC與∠ABC的角平分線相交于點E,AE的延長線交△ABC的外接圓于點D,連接BD.(1)求證:∠BAD=∠DBC;(2)證明:點B、E、C在以點D為圓心的同一個圓上;(3)若AB=5,BC=8,求△ABC內心與外心之間的距離.5、(1)求圖(1)中陰影部分的面積(單位:厘米);(2)如圖(2)所示,已知大正方形的邊長為10厘米,小正方形的邊長為7厘米,求陰影部分面積.(結果保留)-參考答案-一、單選題1、D【解析】【分析】根據直線和圓的位置關系判斷方法,可得結論.【詳解】∵直線m與⊙O公共點的個數為2個∴直線與圓相交∴d<半徑=4故選D.【考點】本題考查了直線與圓的位置關系,掌握直線和圓的位置關系判斷方法:設⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.2、A【解析】【分析】根據點A的坐標,求出OA=2,根據點與圓的位置關系即可做出判斷.【詳解】解:∵點A的坐標為(1,),∴由勾股定理可得:OA=,又∵⊙O的半徑為2,∴點A在⊙O上.故選:A.【考點】本題考查了點和圓的位置關系,點和圓的位置關系是由點到圓心的距離和圓的半徑間的大小關系確定的:(1)當時,點在圓外;(2)當時,點在圓上;(3)當時,點在圓內.3、C【解析】【分析】連接OB,作OM⊥AB與M.根據垂徑定理和勾股定理,求出OP的取值范圍即可判斷.【詳解】解:連接OB,作OM⊥AB與M.∵OM⊥AB,∴AM=BM=AB=4,在直角△OBM中,∵OB=5,BM=4,∴.∴,故選:C.【考點】本題考查了垂徑定理、勾股定理,常把半弦長,半圓心角,圓心到弦距離轉換到同一直角三角形中,然后通過直角三角形予以求解.4、B【解析】【分析】設AB=xcm,則DE=(6-x)cm,根據扇形的弧長等于圓錐底面圓的周長列出方程,求解即可.【詳解】設,則DE=(6-x)cm,由題意,得,解得.故選B.【考點】本題考查了圓錐的計算,矩形的性質,正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.5、C【解析】【分析】根據垂徑定理得出CM=DM,再由已知條件得出圓的半徑為5,在Rt△OCM中,由勾股定理得出CM即可,從而得出CD.【詳解】解:∵AB是⊙O的直徑,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8.故選:C.【考點】本題考查了垂徑定理,圓周角定理以及勾股定理,掌握定理的內容并熟練地運用是解題的關鍵.6、B【解析】【分析】連接AD,如圖,根據圓周角定理得到,,然后利用互余計算出,從而得到的度數.【詳解】解:連接AD,如圖,AB為的直徑,,,.故選B.【考點】本題主要考查了同弦所對的圓周角相等,直徑所對的圓周角是直角,解題的關鍵在于能夠熟練掌握相關知識進行求解.7、C【解析】【分析】過C點作CH⊥AB于H點,在△ABC、△CBH中由分別求出BC和BH,再由垂徑定理求出BD,進而AD=AB-BD即可求解.【詳解】解:過C點作CH⊥AB于H點,如下圖所示:∵∠ACB=90°,∠A=30°,∴△ABC、△CBH均為30°、60°、90°直角三角形,其三邊之比為,Rt△ABC中,,Rt△BCH中,,由垂徑定理可知:,∴,故選:C.【考點】本題考查了直角三角形30°角所對直角邊等于斜邊的一半,垂徑定理等知識點,熟練掌握垂徑定理是解決本題的關鍵.8、D【解析】【分析】根據圓的半徑為5,可得到圓的最大弦長為10,即可求解.【詳解】∵半徑為5,∴直徑為10,∴最長弦長為10,則不可能是11.故選:D.【考點】本題主要考查了圓的基本性質,理解圓的直徑是圓的最長的弦是解題的關鍵.9、D【解析】【分析】根據扇形的弧長公式計算即可.【詳解】∵扇形的圓心角為30°,半徑為2cm,∴弧長cm故答案為:D.【考點】本題主要考查扇形的弧長,熟記扇形的弧長公式是解題的關鍵.10、B【解析】【分析】根據弧的分類、圓的性質逐一判斷即可.【詳解】解:①直徑是最長的弦,故正確;②最長的弦才是直徑,故錯誤;③過圓心的任一直線都是圓的對稱軸,故正確;④半圓是弧,但弧不一定是半圓,故錯誤,正確的有兩個,故選B.【考點】本題考查了對圓的認識,熟知弦的定義、弧的分類是本題的關鍵.二、填空題1、15π【解析】【分析】首先利用勾股定理求得圓錐的底面半徑,然后利用圓錐的側面積=π×底面半徑×母線長,把相應數值代入即可求解.【詳解】解:根據題意,圓錐的底面圓的半徑==3(cm),所以圓錐的側面積=π×3×5=15π(cm2).故答案為:15π.【考點】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長,圓錐的側面積等于“π×底面半徑×母線長”.2、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標系,設拋物線的表達式為y=ax2+1,因為△CDE是等腰直角三角形,DE=2,得點E的坐標為(1,2),可得拋物線的表達式為y=x2+1,把當y代入拋物線表達式,求得MH的長,再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標系,設所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設拋物線的表達式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點E的坐標為(1,2),代入拋物線的表達式,得:2=a+1,a=1,∴拋物線的表達式為y=x2+1,當y時,即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點】本題考查了圓的切線的性質,待定系數法求拋物線的表達式,垂徑定理.解題的關鍵是建立合適的平面直角坐標系得出拋物線的表達式.3、①②④.【解析】【詳解】解:①∵AF是AB翻折而來,∴AF=AB=6.∵AD=BC=,∴DF==3,∴F是CD中點;∴①正確;②連接OP,∵⊙O與AD相切于點P,∴OP⊥AD.∵AD⊥DC,∴OP∥CD,∴,設OP=OF=x,則,解得:x=2,∴②正確;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF.∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③錯誤;④連接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊△.同理△OPG為等邊△,∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG==,∴④正確;故答案為①②④.4、8.【解析】【分析】連結OA,OB,點是的中點,半徑交弦于點,根據垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結OA,OB,∵點是的中點,半徑交弦于點,∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點】本題考查垂徑定理的推論,勾股定理,線段中點定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對的弦,勾股定理,線段中點定義是解題關鍵.5、【解析】【分析】先畫出圓錐側面展開圖(見解析),再利用弧長公式求出圓心角的度數,然后利用等邊三角形的判定與性質、勾股定理可得,最后根據兩點之間線段最短即可得.【詳解】畫出圓錐側面展開圖如下:如圖,連接AB、AD,設圓錐側面展開圖的圓心角的度數為,因為圓錐側面展開圖是一個扇形,扇形的弧長等于底面圓的周長,扇形的半徑等于母線長,所以,解得,則,又,是等邊三角形,點D是BC的中點,,,在中,,由兩點之間線段最短可知,螞蟻爬行的最短路程為,故答案為:.【考點】本題考查了圓錐側面展開圖、弧長公式、等邊三角形的判定與性質等知識點,熟練掌握圓錐側面展開圖是解題關鍵.6、44°【解析】【分析】首先連接OB,由點C在過點B的切線上,且OC⊥OA,根據等角的余角相等,易證得∠CBP=∠CPB,利用等腰三角形的性質解答即可.【詳解】連接OB,∵BC是⊙O的切線,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案為44°【考點】此題考查了切線的性質.此題難度適中,注意掌握輔助線的作法,注意掌握數形結合思想與方程思想的應用.7、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點】本題主要考查圓心角定理與垂徑定理,解此題的關鍵在于熟練掌握其知識點.8、直徑所對的圓周角是直角【解析】【分析】根據圓周角定理即可得出結論.【詳解】解:根據“直徑所對的圓周角是直角”得出.故答案為直徑所對的圓周角是直角.【考點】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關鍵.9、

2米

12.56平方米【解析】【分析】根據周長公式轉化為,將C=12.56代入進行計算得到半徑,繼續(xù)利用面積公式,代入半徑的值求出面積的結果.【詳解】因為C=2πr,所以==2,所以r=2(米),因為S=πr2=3.14×22=12.56(平方米).故答案為:2米

12.56平方米.【考點】考查圓的面積和周長與半徑之間的關系,學生必須熟練掌握圓的面積和周長的求解公式,選擇相應的公式進行計算,利用公式是解題的關鍵.10、【解析】【分析】如圖:連接OP、OQ,根據,可得當OP⊥AB時,PQ最短;在中運用含30°的直角三角形的性質和勾股定理求得AB、AQ的長,然后再運用等面積法求得OP的長,最后運用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線∴PQ⊥OQ∴∴當OP⊥AB時,如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點】本題考查了切線的性質、含30°直角三角形的性質、勾股定理等知識點,此正確作出輔助線、根據勾股定理確定當PO⊥AB時、線段PQ最短是解答本題的關鍵.三、解答題1、【解析】【分析】根據弧長的計算公式計算即可.【詳解】解:圓心角的度數.【考點】本題考查弧長的計算,掌握弧長公式是解題的關鍵.2、(1)見解析;(2)【解析】【分析】(1)以A為圓心,為半徑畫弧交于,作直線交于點,直線即為所求.(2)設,利用勾股定理構建方程即可解決問題.【詳解】解:(1)如圖,直線即為所求.(2)連接,.是的內切圓,,,是切點,,四邊形是矩形,,四邊形是正方形,,,設,在中,,,,.【考點】本題考查作圖復雜作圖,切線的性質,勾股定理等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.3、(1)見解析;(2)圓周角定理;,圓周角定理的推論【解析】【分析】(1)利用幾何語言畫出對應的幾何圖形;(2)先根據圓周角定理得到,再利用等腰三角形的性質得到,從而得到.【詳解】解:(1)如圖,為所作;(2)證明:連接,如圖,,點在上.點在上,(圓周角定理),,(圓周角定理的推論).故答案為:圓周角定理;;圓周角定理的推論.【考點】本題考查了作圖復雜作圖、也考查了圓周角定理,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論