考點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》專項測試試卷(含答案詳解)_第1頁
考點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》專項測試試卷(含答案詳解)_第2頁
考點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》專項測試試卷(含答案詳解)_第3頁
考點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》專項測試試卷(含答案詳解)_第4頁
考點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》專項測試試卷(含答案詳解)_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,平行四邊形ABCD的周長為36,對角線AC,BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長是()A.12 B.15 C.18 D.242、如圖所示,AB=CD,AD=BC,則圖中的全等三角形共有()A.1對 B.2對 C.3對 D.4對3、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點,則△AEF的面積為()A.2 B.3 C.4 D.54、如圖,已知菱形ABCD的對角線AC,BD的長分別為6,8,AE⊥BC,垂足為點E,則AE的長是()A.5 B.2 C. D.5、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點D,E是AD上的一個動點,連接EC,將線段EC繞點C按逆時針方向旋轉(zhuǎn)60°得到FC,連接DF,則在點E的運動過程中,DF的最小值是()A.1 B.1.5 C.2 D.46、若一個直角三角形的周長為,斜邊上的中線長為1,則此直角三角形的面積為()A. B. C. D.7、如圖,菱形ABCD的邊長為6cm,∠BAD=60°,將該菱形沿AC方向平移2cm得到四邊形A′B′C′D′,A′D′交CD于點E,則點E到AC的距離為()A.1 B. C..2 D.28、的周長為32cm,AB:BC=3:5,則AB、BC的長分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm9、在△ABC中,AD是角平分線,點E、F分別是線段AC、CD的中點,若△ABD、△EFC的面積分別為21、7,則的值為()A. B. C. D.10、已知三角形三邊長分別為7cm,8cm,9cm,作三條中位線組成一個新的三角形,同樣方法作下去,一共做了五個新的三角形,則這五個新三角形的周長之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、判斷:(1)菱形的對角線互相垂直且相等____()____(2)菱形的對角線把菱形分成四個全等的直角三角形____()____2、已知正方形ABCD的一條對角線長為2,則它的面積是______.3、如圖,在?ABCD中,點E是對角線AC上一點,過點E作AC的垂線,交邊AD于點P,交邊BC于點Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為________________.4、如圖,M,N分別是矩形ABCD的邊AD,AB上的點,將矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,連接MC,若AB=8,AD=16,BE=4,則MC的長為________.5、如圖,在矩形ABCD中,BC=2,AB=x,點E在邊CD上,且CEx,將BCE沿BE折疊,若點C的對應(yīng)點落在矩形ABCD的邊上,則x的值為_______.6、如果一個矩形較短的邊長為5cm,兩條對角線的夾角為60°,則這個矩形的對角線長是_________cm.7、如圖,在邊長為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_____.8、如圖,四邊形和四邊形都是邊長為4的正方形,點是正方形對角線的交點,正方形繞點旋轉(zhuǎn)過程中分別交,于點,,則四邊形的面積為______.9、在菱形ABCD中,∠B=60°,BC=2cm,M為AB的中點,N為BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DE,CE,當(dāng)△CDE為等腰三角形時,線段BN的長為_____.10、一個矩形的兩條對角線所夾的銳角是60°,這個角所對的邊長為10cm,則該矩形的面積為_______.三、解答題(5小題,每小題6分,共計30分)1、如圖,中,.(1)作點A關(guān)于的對稱點C;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)所作的圖中,連接,,連接,交于點O.求證:四邊形是菱形.2、如圖,四邊形ABCD是平行四邊形,延長DA,BC,使得AE=CF,連接BE,DF.(1)求證:△ABE≌△CDF;(2)連接BD,若∠1=32°,∠ADB=22°,請直接寫出當(dāng)∠ABE=°時,四邊形BFDE是菱形.3、在ABC中,D、E、F分別是AB、AC、BC的中點,連接DE、DF.(1)如圖1,若AC=BC,求證:四邊形DECF為菱形;(2)如圖2,過C作CGAB交DE延長線于點G,連接EF,AG,在不添加任何輔助線的情況下,寫出圖中所有與ADG面積相等的平行四邊形.4、如圖,在Rt△ABC中,∠ACB=90°.

(1)作AB的垂直平分線l,交AB于點D,連接CD,分別作∠ADC,∠BDC的平分線,交AC,BC于點E,F(xiàn)(尺規(guī)作圖,不寫作法,保作圖痕跡);(2)求證:四邊形CEDF是矩形.5、如圖,在矩形中,,,且四邊形是一個正方形,試問點F是的黃金分割點嗎?請說明理由.(補全解題過程)-參考答案-一、單選題1、B【解析】【分析】根據(jù)平行四邊形的對邊相等和對角線互相平分可得,OB=OD,又因為E點是CD的中點,可得OE是△BCD的中位線,可得OE=BC,所以易求△DOE的周長.【詳解】解:∵?ABCD的周長為36,∴2(BC+CD)=36,則BC+CD=18.∵四邊形ABCD是平行四邊形,對角線AC,BD相交于點O,BD=12,∴OD=OB=BD=6.又∵點E是CD的中點,∴OE是△BCD的中位線,DE=CD,∴OE=BC,∴△DOE的周長=OD+OE+DE=BD+(BC+CD)=6+9=15,故選:B.【點睛】本題考查了三角形中位線定理、平行四邊形的性質(zhì).解題時,利用了“平行四邊形對角線互相平分”、“平行四邊形的對邊相等”的性質(zhì).2、D【解析】【分析】根據(jù)平行四邊形的判定與性質(zhì),求解即可.【詳解】解:∵AB=CD,AD=BC∴四邊形為平行四邊形∴,,,∴、又∵,∴、∴圖中的全等三角形共有4對故選:D【點睛】此題考查了平行四邊形的判定與性質(zhì),全等三角形的判定與性質(zhì),解題的關(guān)鍵是掌握平行四邊形的判定與性質(zhì).3、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點,即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點,∴,,,∴,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).4、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長,在Rt△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.5、C【解析】【分析】取線段AC的中點G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進而即可得出DF=GE,再根據(jù)點G為AC的中點,即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當(dāng)EG∥BC時,EG最小,∵點G為AC的中點,∴此時EG=DF=CD=BC=2.故選:C.【點睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關(guān)鍵是通過全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.6、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個直角三角形的周長為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識點的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學(xué)習(xí)應(yīng)用.7、C【解析】【分析】根據(jù)題意連接BD,過點E作EF⊥AC于點F,根據(jù)菱形的性質(zhì)可以證明三角形ABD是等邊三角形,根據(jù)平移的性質(zhì)可得AD∥A′E,可得,,進而求出A′E,再利用30度角所對直角邊等于斜邊的一半即可得出結(jié)論.【詳解】解:如圖,連接BD,過點E作EF⊥AC于點F,∵四邊形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等邊三角形,∵菱形ABCD的邊長為6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故選:C.【點睛】本題考查菱形的性質(zhì)以及等邊三角形的判定與性質(zhì)和平移的性質(zhì),解決本題的關(guān)鍵是掌握菱形的性質(zhì).8、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長為32cm,∴,即,解得:,∴.故選:C【點睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對邊相等是解題的關(guān)鍵.9、B【解析】【分析】過點A作△ABC的高,設(shè)為x,過點E作△EFC的高為,可求出,,再由點E、F分別是線段AC、CD的中點,可得出,進而求出,再利用角平分線的性質(zhì)可得出的值為即可求解.【詳解】解:過點A作△ABC的高,設(shè)為x,過點E作△EFC的高為,∴,∴,,∵點E、F分別是線段AC、CD的中點,∴,∴,∵,∴,∴,過點D作DM⊥AB,DN⊥AC,∵AD為平分線,∴DM=DN,∵,∴,即:∴,故選:B.【點睛】本題考查角平分線性質(zhì)定理及三角形中位線的性質(zhì),解題關(guān)鍵是求出.10、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長,由此即可求出其他四個新三角形的周長,最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長,同理可得:△GHI的周長,∴第三次作中位線得到的三角形周長為,∴第四次作中位線得到的三角形周長為∴第三次作中位線得到的三角形周長為∴這五個新三角形的周長之和為,故選C.【點睛】本題主要考查了三角形中位線定理,解題的關(guān)鍵在于能夠熟練掌握三角形中位線定理.二、填空題1、×√【解析】【分析】根據(jù)菱形的性質(zhì),即可求解.【詳解】解:(1)菱形的對角線互相垂直且平分;(2)菱形的對角線把菱形分成四個全等的直角三角形.故答案為:(1)×;(2)√【點睛】本題主要考查了菱形的性質(zhì),熟練掌握菱形的對角線互相垂直且平分是解題的關(guān)鍵.2、6【解析】【分析】正方形的面積:邊長的平方或兩條對角線之積的一半,根據(jù)公式直接計算即可.【詳解】解:正方形ABCD的一條對角線長為2,故答案為:【點睛】本題考查的是正方形的性質(zhì),掌握“正方形的面積等于兩條對角線之積的一半”是解題的關(guān)鍵.3、【解析】【分析】利用平行四邊形的知識,將的最小值轉(zhuǎn)化為的最小值,再利用勾股定理求出MC的長度,即可求解;【詳解】過點A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉(zhuǎn)化為的最小值,當(dāng)M、P、C三點共線時,的最小,∵,,∴,在中,;故答案是:.【點睛】本題主要考查了平行線的判定與性質(zhì),勾股定理,準確計算是解題的關(guān)鍵.4、10【解析】【分析】過E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點睛】本題考查折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理,掌握折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理是解題關(guān)鍵.5、或【解析】【分析】分兩種情況進行解答,即當(dāng)點落在邊上和點落在邊上,分別畫出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進行計算即可.【詳解】解:如圖1,當(dāng)點落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問題的前提.6、10【解析】【分析】如圖,由題意得:四邊形為矩形,證明是等邊三角形,結(jié)合矩形的性質(zhì)可得答案.【詳解】解:如圖,由題意得:四邊形為矩形,是等邊三角形,故答案為:【點睛】本題考查的是等邊三角形的判定與性質(zhì),矩形的性質(zhì),掌握“矩形的對角線相等且互相平分”是解本題的關(guān)鍵.7、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點A′在過點A且平行于BD的定直線上,作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點A′在過點A且平行于BD的定直線上,∴作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過點D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.8、4【解析】【分析】過點O作OG⊥AB,垂足為G,過點O作OH⊥BC,垂足為H,把四邊形的面積轉(zhuǎn)化為正方形OGBH的面積,等于正方形ABCD面積的.【詳解】如圖,過點O作OG⊥AB,垂足為G,過點O作OH⊥BC,垂足為H,∵四邊形ABCD的對角線交點為O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,∴四邊形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案為:4.【點睛】本題考查了正方形的性質(zhì),三角形的全等與性質(zhì),補形法計算面積,熟練掌握正方形的性質(zhì),靈活運用補形法計算面積是解題的關(guān)鍵.9、cm或2cm【解析】【分析】分兩種情況:①如圖1,當(dāng)DE=DC時,連接DM,作DG⊥BC于G,由菱形的性質(zhì)得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=120°,證出D、E、N三點共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如圖2,當(dāng)CE=CD上,CE=CD=AD,此時點E與A重合,N與點C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2(含CE=DE這種情況).【詳解】解:分兩種情況,①如圖1,當(dāng)DE=DC時,連接DM,作DG⊥BC于G,∵四邊形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M為AB的中點,∴AM=BM=1,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三點共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②當(dāng)CE=CD時,CE=CD=AD,此時點E與A重合,N與點C重合,如圖2所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2cm(符合題干要求);綜上所述,當(dāng)△CDE為等腰三角形時,線段BN的長為cm或2cm;故答案為cm或2cm.【點睛】本題考查了折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、三點共線、勾股定理、直角三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,熟練掌握并靈活運用是解題的關(guān)鍵.10、【解析】【分析】先根據(jù)矩形的性質(zhì)證明△ABC是等邊三角形,得到,則,然后根據(jù)勾股定理求出,最后根據(jù)矩形面積公式求解即可.【詳解】:如圖所示,在矩形ABCD中,∠AOB=60°,,∵四邊形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等邊三角形,∴,∴,∴,∴,故答案為:.【點睛】本題主要考查了矩形的性質(zhì),勾股定理,等邊三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握矩形的性質(zhì).三、解答題1、(1)見解析;(2)見解析【分析】(1)作BD的垂直平分線,再截取即可;(2)先證明三角形全等,然后根據(jù)全等三角形的性質(zhì)可得:,依據(jù)菱形的判定定理即可證明.【詳解】(1)解:如圖所示,作BD的垂直平分線,再截取,點即為所求.(2)證明:如圖所示:∵,,∴,在與中,,∴;∴,又∵,∴四邊形是菱形.【點睛】本題考查了尺規(guī)作圖和菱形的證明,解題關(guān)鍵是熟練運用尺規(guī)作圖方法和菱形的判定定理進行作圖與證明.2、(1)見解析;(2)12【分析】(1)由“SAS”可證△ABE≌△CDF;

(2)通過證明BE=DE,可得結(jié)論.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,

∴AB=CD,∠BAD=∠BCD,

∴∠1=∠DCF,

在△ABE和△CDF中,,

∴△ABE≌△CDF(SAS);

(2)當(dāng)∠ABE=10°時,四邊形BFDE是菱形,

理由如下:∵△ABE≌△CDF,

∴BE=DF,AE=CF,∵四邊形ABCD是平行四邊形,

∴AD=BC,

∴AD+AE=BC+CF,

∴BF=DE,

∴四邊形BFDE是平行四邊形,

∵∠1=32°,∠ADB=22°,

∴∠ABD=∠1-∠ADB=10°,

∵∠ABE=12°,

∴∠DBE=22°,

∴∠DBE=∠ADB=22°,

∴BE=DE,

∴平行四邊形BFDE是菱形,

故答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論