版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
無錫濱湖區(qū)雪浪中學(xué)七年級下冊數(shù)學(xué)期末試卷專題練習(xí)(解析版)一、解答題1.已知直線AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線PB按逆時(shí)針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時(shí)針方向每秒3°旋轉(zhuǎn)至QD停止,此時(shí)射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時(shí)開始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時(shí)間10秒時(shí),PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為多少秒時(shí),PB′//QC′.2.已知,AB∥CD,點(diǎn)E在CD上,點(diǎn)G,F(xiàn)在AB上,點(diǎn)H在AB,CD之間,連接FE,EH,HG,∠AGH=∠FED,F(xiàn)E⊥HE,垂足為E.(1)如圖1,求證:HG⊥HE;(2)如圖2,GM平分∠HGB,EM平分∠HED,GM,EM交于點(diǎn)M,求證:∠GHE=2∠GME;(3)如圖3,在(2)的條件下,F(xiàn)K平分∠AFE交CD于點(diǎn)K,若∠KFE:∠MGH=13:5,求∠HED的度數(shù).3.已知:如圖(1)直線AB、CD被直線MN所截,∠1=∠2.(1)求證:AB//CD;(2)如圖(2),點(diǎn)E在AB,CD之間的直線MN上,P、Q分別在直線AB、CD上,連接PE、EQ,PF平分∠BPE,QF平分∠EQD,則∠PEQ和∠PFQ之間有什么數(shù)量關(guān)系,請直接寫出你的結(jié)論;(3)如圖(3),在(2)的條件下,過P點(diǎn)作PH//EQ交CD于點(diǎn)H,連接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度數(shù).4.如圖1,MN∥PQ,點(diǎn)C、B分別在直線MN、PQ上,點(diǎn)A在直線MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點(diǎn)E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數(shù).5.已知:AB∥CD,截線MN分別交AB、CD于點(diǎn)M、N.(1)如圖①,點(diǎn)B在線段MN上,設(shè)∠EBM=α°,∠DNM=β°,且滿足+(β﹣60)2=0,求∠BEM的度數(shù);(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長線于點(diǎn)F;請寫出∠DEF與∠CDF之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,當(dāng)點(diǎn)P在射線NT上運(yùn)動時(shí),∠DCP與∠BMT的平分線交于點(diǎn)Q,則∠Q與∠CPM的比值為(直接寫出答案).二、解答題6.如圖,以直角三角形的直角頂點(diǎn)為原點(diǎn),以、所在直線為軸和軸建立平面直角坐標(biāo)系,點(diǎn),滿足.(1)點(diǎn)的坐標(biāo)為______;點(diǎn)的坐標(biāo)為______.(2)如圖1,已知坐標(biāo)軸上有兩動點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)出發(fā)沿軸負(fù)方向以1個(gè)單位長度每秒的速度勻速移動,點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長度每秒的速度沿軸正方向移動,點(diǎn)到達(dá)點(diǎn)整個(gè)運(yùn)動隨之結(jié)束.的中點(diǎn)的坐標(biāo)是,設(shè)運(yùn)動時(shí)間為.問:是否存在這樣的,使?若存在,請求出的值:若不存在,請說明理由.(3)如圖2,過作,作交于點(diǎn),點(diǎn)是線段上一動點(diǎn),連交于點(diǎn),當(dāng)點(diǎn)在線段上運(yùn)動的過程中,的值是否會發(fā)生變化?若不變,請求出它的值:若變化,請說明理由.7.(1)光線從空氣中射入水中會產(chǎn)生折射現(xiàn)象,同時(shí)光線從水中射入空氣中也會產(chǎn)生折射現(xiàn)象,如圖1,光線a從空氣中射入水中,再從水中射入空氣中,形成光線b,根據(jù)光學(xué)知識有,請判斷光線a與光線b是否平行,并說明理由.(2)光線照射到鏡面會產(chǎn)生反射現(xiàn)象,由光學(xué)知識,入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,如圖2有一口井,已知入射光線與水平線的夾角為,問如何放置平面鏡,可使反射光線b正好垂直照射到井底?(即求與水平線的夾角)(3)如圖3,直線上有兩點(diǎn)A、C,分別引兩條射線、.,,射線、分別繞A點(diǎn),C點(diǎn)以1度/秒和3度/秒的速度同時(shí)順時(shí)針轉(zhuǎn)動,設(shè)時(shí)間為t,在射線轉(zhuǎn)動一周的時(shí)間內(nèi),是否存在某時(shí)刻,使得與平行?若存在,求出所有滿足條件的時(shí)間t.8.如圖1,E點(diǎn)在BC上,∠A=∠D,AB∥CD.(1)直接寫出∠ACB和∠BED的數(shù)量關(guān)系;(2)如圖2,BG平分∠ABE,與∠CDE的鄰補(bǔ)角∠EDF的平分線交于H點(diǎn).若∠E比∠H大60°,求∠E;(3)保持(2)中所求的∠E不變,如圖3,BM平分∠ABE的鄰補(bǔ)角∠EBK,DN平分∠CDE,作BP∥DN,則∠PBM的度數(shù)是否改變?若不變,請求值;若改變,請說理由.9.(1)學(xué)習(xí)了平行線以后,香橙同學(xué)想出了過一點(diǎn)畫一條直線的平行線的新方法,她是通過折紙做的,過程如(圖1).①請你仿照以上過程,在圖2中畫出一條直線b,使直線b經(jīng)過點(diǎn)P,且,要求保留折紙痕跡,畫出所用到的直線,指明結(jié)果.無需寫畫法:②在(1)中的步驟(b)中,折紙實(shí)際上是在尋找過點(diǎn)P的直線a的線.(2)已知,如圖3,,BE平分,CF平分.求證:(寫出每步的依據(jù)).10.(感知)如圖①,,求的度數(shù).小明想到了以下方法:解:如圖①,過點(diǎn)作,(兩直線平行,內(nèi)錯角相等)(已知),(平行于同一條直線的兩直線平行),(兩直線平行,同旁內(nèi)角互補(bǔ)).(已知),(等式的性質(zhì)).(等式的性質(zhì)).即(等量代換).(探究)如圖②,,,求的度數(shù).(應(yīng)用)如圖③所示,在(探究)的條件下,的平分線和的平分線交于點(diǎn),則的度數(shù)是_______________.三、解答題11.在△ABC中,∠BAC=90°,點(diǎn)D是BC上一點(diǎn),將△ABD沿AD翻折后得到△AED,邊AE交BC于點(diǎn)F.(1)如圖①,當(dāng)AE⊥BC時(shí),寫出圖中所有與∠B相等的角:;所有與∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度數(shù);②是否存在這樣的x的值,使得△DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請說明理由.12.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個(gè)角度數(shù)改為:當(dāng),,則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.()若和的度數(shù)改為用字母和來表示,你能找到與和之間的關(guān)系嗎?請直接寫出你發(fā)現(xiàn)的結(jié)論.13.如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(2)將圖①中的三角板OMN繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),使∠BON=30°,如圖③,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(3)將圖①中的三角板OMN繞點(diǎn)O按每秒30°的速度按逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第____________秒時(shí),直線MN恰好與直線CD垂直.(直接寫出結(jié)果)14.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=50°+60°=110°.問題遷移:(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動,當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動時(shí),∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請說明理由;(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.15.如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細(xì)觀察,在圖2中有個(gè)以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.【參考答案】一、解答題1.(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根解析:(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時(shí),②當(dāng)15<t≤30時(shí),③當(dāng)30<t<45時(shí),根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時(shí)間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時(shí)間30秒時(shí),由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時(shí),如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時(shí),如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時(shí),如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問題.2.(1)見解析;(2)見解析;(3)40°【分析】(1)根據(jù)平行線的性質(zhì)和判定解答即可;(2)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可;(3)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可.解析:(1)見解析;(2)見解析;(3)40°【分析】(1)根據(jù)平行線的性質(zhì)和判定解答即可;(2)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可;(3)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可.【詳解】證明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)過點(diǎn)M作MQ∥AB,∵AB∥CD,∴MQ∥CD,過點(diǎn)H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵M(jìn)Q∥AB,∴∠BGM=∠GMQ,∵M(jìn)Q∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)過點(diǎn)M作MQ∥AB,過點(diǎn)H作HP∥AB,由∠KFE:∠MGH=13:5,設(shè)∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=∠AFE,即,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)定理以及靈活構(gòu)造平行線是解題的關(guān)鍵.3.(1)見解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線解析:(1)見解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線的性質(zhì)即可證明;(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,想辦法構(gòu)建方程即可解決問題;【詳解】(1)如圖1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)結(jié)論:如圖2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可證:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y(tǒng)+z﹣x,∵PQ平分∠EPH,∴Z=y(tǒng)+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),角平分線的定義等知識.(2)中能正確作出輔助線是解題的關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題的關(guān)鍵.4.(1)證明見解析;(2)證明見解析;(3)120°.【分析】(1)過點(diǎn)A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)解析:(1)證明見解析;(2)證明見解析;(3)120°.【分析】(1)過點(diǎn)A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)由兩直線平行,同旁內(nèi)角互補(bǔ)得到∴、∠CAB+∠ACD=180°,由鄰補(bǔ)角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線的性質(zhì)得到,∠FAB=120°﹣∠GCA,再由角平分線的定義及平行線的性質(zhì)得到∠GCA﹣∠ABF=60°,最后根據(jù)三角形的內(nèi)角和是180°即可求解.【詳解】解:(1)證明:如圖1,過點(diǎn)A作AD∥MN,∵M(jìn)N∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),線段、角、相交線與平行線,準(zhǔn)確的推導(dǎo)是解決本題的關(guān)鍵.5.(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行線的性質(zhì)可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數(shù)量可求解;(3)由平行線的性質(zhì)和外角性質(zhì)可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過點(diǎn)E作直線EH∥AB,∵DF平分∠CDE,∴設(shè)∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設(shè)MQ與CD交于點(diǎn)E,∵M(jìn)Q平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì),準(zhǔn)確計(jì)算是解題的關(guān)鍵.二、解答題6.(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對值和算術(shù)平方根的非負(fù)性,求得a,b的值,再利用中點(diǎn)坐標(biāo)公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對值和算術(shù)平方根的非負(fù)性,求得a,b的值,再利用中點(diǎn)坐標(biāo)公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列出關(guān)于t的方程,求得t的值即可;(3)過H點(diǎn)作AC的平行線,交x軸于P,先判定OG∥AC,再根據(jù)角的和差關(guān)系以及平行線的性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入進(jìn)行計(jì)算即可.【詳解】解:(1)∵+|b-2|=0,∴a-2b=0,b-2=0,解得a=4,b=2,∴A(0,4),C(2,0).(2)存在,理由:如圖1中,D(1,2),由條件可知:P點(diǎn)從C點(diǎn)運(yùn)動到O點(diǎn)時(shí)間為2秒,Q點(diǎn)從O點(diǎn)運(yùn)動到A點(diǎn)時(shí)間為2秒,∴0<t≤2時(shí),點(diǎn)Q在線段AO上,即CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=?OP?yD=(2-t)×2=2-t,S△DOQ=?OQ?xD=×2t×1=t,∵S△ODP=S△ODQ,∴2-t=t,∴t=1.(3)結(jié)論:的值不變,其值為2.理由如下:如圖2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如圖,過H點(diǎn)作AC的平行線,交x軸于P,則∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴=2.【點(diǎn)睛】本題主要考查三角形綜合題、非負(fù)數(shù)的性質(zhì)、三角形的面積、平行線的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,學(xué)會用轉(zhuǎn)化的思想思考問題.7.(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補(bǔ)角相等求出∠3與∠4的補(bǔ)角相等,再根據(jù)內(nèi)錯角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反解析:(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補(bǔ)角相等求出∠3與∠4的補(bǔ)角相等,再根據(jù)內(nèi)錯角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反射光線與鏡面的夾角相等可得∠1=∠2,然后根據(jù)平角等于180°求出∠1的度數(shù),再加上40°即可得解;(3)分①AB與CD在EF的兩側(cè),分別表示出∠ACD與∠BAC,然后根據(jù)兩直線平行,內(nèi)錯角相等列式計(jì)算即可得解;②CD旋轉(zhuǎn)到與AB都在EF的右側(cè),分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計(jì)算即可得解;③CD旋轉(zhuǎn)到與AB都在EF的左側(cè),分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計(jì)算即可得解.【詳解】解:(1)平行.理由如下:如圖1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(內(nèi)錯角相等,兩直線平行);(2)如圖2:∵入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,∴∠1=∠2,∵入射光線a與水平線OC的夾角為40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=×50°=25°,∴MN與水平線的夾角為:25°+40°=65°,即MN與水平線的夾角為65°,可使反射光線b正好垂直照射到井底;(3)存在.如圖①,AB與CD在EF的兩側(cè)時(shí),∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠ACD=∠BAC,即115-3t=105-t,解得t=5;如圖②,CD旋轉(zhuǎn)到與AB都在EF的右側(cè)時(shí),∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠DCF=∠BAC,即295-3t=105-t,解得t=95;如圖③,CD旋轉(zhuǎn)到與AB都在EF的左側(cè)時(shí),∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,則∠DCF=∠BAC,即3t-295=t-105,解得t=95,此時(shí)t>105,∴此情況不存在.綜上所述,t為5秒或95秒時(shí),CD與AB平行.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),光學(xué)原理,讀懂題意并熟練掌握平行線的判定方法與性質(zhì)是解題的關(guān)鍵,(3)要注意分情況討論.8.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如圖1,延長DE交AB于點(diǎn)F,根據(jù)ABCD可得∠DFB=∠D,則∠DFB=∠A,可得ACDF,根據(jù)平行線的性質(zhì)得∠A解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如圖1,延長DE交AB于點(diǎn)F,根據(jù)ABCD可得∠DFB=∠D,則∠DFB=∠A,可得ACDF,根據(jù)平行線的性質(zhì)得∠ACB+∠CEF=180°,由對頂角相等可得結(jié)論;(2)如圖2,作EMCD,HNCD,根據(jù)ABCD,可得ABEMHNCD,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再根據(jù)∠DEB比∠DHB大60°,列出等式即可求∠DEB的度數(shù);(3)如圖3,過點(diǎn)E作ESCD,設(shè)直線DF和直線BP相交于點(diǎn)G,根據(jù)平行線的性質(zhì)和角平分線定義可求∠PBM的度數(shù).【詳解】解:(1)如圖1,延長交于點(diǎn),,,,,,,,故答案為:;(2)如圖2,作,,,,,,平分,,,,,,,平分,,,,,設(shè),,比大,,,解得.的度數(shù)為;(3)的度數(shù)不變,理由如下:如圖3,過點(diǎn)作,設(shè)直線和直線相交于點(diǎn),平分,平分,,,,,,,,,由(2)可知:,,,,,,.【點(diǎn)睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).9.(1)①見解析;②垂;(2)見解析【分析】(1)①過點(diǎn)折紙,使痕跡垂直直線,然后過點(diǎn)折紙使痕跡與前面的痕跡垂直,從而得到直線;②步驟(b)中,折紙實(shí)際上是在尋找過點(diǎn)的直線的垂線.(2)先根據(jù)解析:(1)①見解析;②垂;(2)見解析【分析】(1)①過點(diǎn)折紙,使痕跡垂直直線,然后過點(diǎn)折紙使痕跡與前面的痕跡垂直,從而得到直線;②步驟(b)中,折紙實(shí)際上是在尋找過點(diǎn)的直線的垂線.(2)先根據(jù)平行線的性質(zhì)得到,再利用角平分線的定義得到,然后根據(jù)平行線的判定得到結(jié)論.【詳解】(1)解:①如圖2所示:②在(1)中的步驟(b)中,折紙實(shí)際上是在尋找過點(diǎn)的直線的垂線.故答案為垂;(2)證明:平分,平分(已知),,(角平分線的定義),(已知),(兩直線平行,內(nèi)錯角相等),(等量代換),(等式性質(zhì)),(內(nèi)錯角相等,兩直線平行).【點(diǎn)睛】本題考查了作圖復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了平行線的性質(zhì)與判定.10.[探究]70°;[應(yīng)用]35【分析】[探究]如圖②,根據(jù)AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度數(shù).[應(yīng)用]如圖③所示,在[探究]的條件下,根據(jù)∠PEA的平分線解析:[探究]70°;[應(yīng)用]35【分析】[探究]如圖②,根據(jù)AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度數(shù).[應(yīng)用]如圖③所示,在[探究]的條件下,根據(jù)∠PEA的平分線和∠PFC的平分線交于點(diǎn)G,可得∠G的度數(shù).【詳解】解:[探究]如圖②,過點(diǎn)P作PM∥AB,∴∠MPE=∠AEP=50°(兩直線平行,內(nèi)錯角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一條直線的兩直線平行),∴∠PFC=∠MPF=120°(兩直線平行,內(nèi)錯角相等).∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性質(zhì)).答:∠EPF的度數(shù)為70°;[應(yīng)用]如圖③所示,∵EG是∠PEA的平分線,PG是∠PFC的平分線,∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,過點(diǎn)G作GM∥AB,∴∠MGE=∠AEG=25°(兩直線平行,內(nèi)錯角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一條直線的兩直線平行),∴∠GFC=∠MGF=60°(兩直線平行,內(nèi)錯角相等).∴∠G=∠MGF-MGE=60°-25°=35°.答:∠G的度數(shù)是35°.故答案為:35.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì)、平行公理及推論,解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).三、解答題11.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,再由根據(jù)角的和差計(jì)算即可得∠C的度數(shù),進(jìn)而得∠B的度數(shù).②根據(jù)翻折的性質(zhì)和三角形外角及三角形內(nèi)角和定理,用含x的代數(shù)式表示出∠FDE、∠DFE的度數(shù),分三種情況討論求出符合題意的x值即可.【詳解】(1)由翻折的性質(zhì)可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故與∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故與∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°則,,由翻折可知:∵,,∴,,當(dāng)∠FDE=∠DFE時(shí),,解得:;當(dāng)∠FDE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);當(dāng)∠DFE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);綜上所述,存在這樣的x的值,使得△DEF中有兩個(gè)角相等.且.【點(diǎn)睛】本題考查圖形的翻折、三角形內(nèi)角和定理、平行線的判定及其性質(zhì)、三角形外角的性質(zhì)、等角代換,解題的關(guān)鍵是熟知圖形翻折的性質(zhì)及綜合運(yùn)用所學(xué)知識.12.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);(2)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),則前三問利用即可得出答案,第4問利用即可得出答案;(3)按照(2)的方法,將相應(yīng)的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,.(3)當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當(dāng)時(shí),;當(dāng)時(shí),.【點(diǎn)睛】本題主要考查三角形內(nèi)角和定理和三角形的角平分線,高,掌握三角形內(nèi)角和定理和直角三角形兩銳角互余是解題的關(guān)鍵.13.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)即可求出∠CEN的度數(shù).(3)畫出圖形,求出在MN⊥CD時(shí)的旋轉(zhuǎn)角,再除以30°即得結(jié)果.【詳解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如圖,MN⊥CD時(shí),旋轉(zhuǎn)角為360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒時(shí),直線MN恰好與直線CD垂直.【點(diǎn)睛】本題以學(xué)生熟悉的三角板為載體,考查了三角形的內(nèi)角和、平行線的判定和性質(zhì)、垂直的定義和旋轉(zhuǎn)的性質(zhì),前兩小題難度不大,難點(diǎn)是第(3)小題,解題的關(guān)鍵是畫出適合題意的幾何圖形,弄清求旋轉(zhuǎn)角的思路和方法,本題的第一種情況是將旋轉(zhuǎn)角∠DOM放在四邊形DOMF中,用四邊形內(nèi)角和求解,第二種情況是用周角減去∠DOM的度數(shù).14.(1),理由見解析;(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),;當(dāng)點(diǎn)P在射線AM上時(shí),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 供應(yīng)鏈管理師持續(xù)改進(jìn)評優(yōu)考核試卷含答案
- 選剝混繭工安全意識模擬考核試卷含答案
- 野生植物監(jiān)測工崗前創(chuàng)新方法考核試卷含答案
- 森林撫育工安全生產(chǎn)能力水平考核試卷含答案
- 塑料熱合工持續(xù)改進(jìn)評優(yōu)考核試卷含答案
- 制漿工QC考核試卷含答案
- 2024年貴陽信息科技學(xué)院輔導(dǎo)員招聘備考題庫附答案
- 整經(jīng)工操作能力模擬考核試卷含答案
- 水上打樁工操作評估測試考核試卷含答案
- 織襪工崗前理論評估考核試卷含答案
- 統(tǒng)編版語文二年級上冊知識點(diǎn)
- 北京師范大學(xué)介紹
- 設(shè)備隱患排查培訓(xùn)
- 國家事業(yè)單位招聘2025中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所招聘12人筆試歷年參考題庫附帶答案詳解
- 售后技術(shù)服務(wù)流程規(guī)范
- 六性分析報(bào)告標(biāo)準(zhǔn)格式與范例
- 餐具分揀裝置的設(shè)計(jì)(機(jī)械工程專業(yè))
- 供水管網(wǎng)施工期間居民供水保障方案
- 江蘇省常州市鐘樓區(qū)小學(xué)語文三年級上冊期末檢測卷(含答案)
- 2025年縣司法局行政執(zhí)法協(xié)調(diào)監(jiān)督工作自查報(bào)告
- 醫(yī)院科室臺風(fēng)應(yīng)急預(yù)案
評論
0/150
提交評論