解析卷-人教版8年級(jí)數(shù)學(xué)上冊(cè)《軸對(duì)稱》定向測(cè)試試題_第1頁
解析卷-人教版8年級(jí)數(shù)學(xué)上冊(cè)《軸對(duì)稱》定向測(cè)試試題_第2頁
解析卷-人教版8年級(jí)數(shù)學(xué)上冊(cè)《軸對(duì)稱》定向測(cè)試試題_第3頁
解析卷-人教版8年級(jí)數(shù)學(xué)上冊(cè)《軸對(duì)稱》定向測(cè)試試題_第4頁
解析卷-人教版8年級(jí)數(shù)學(xué)上冊(cè)《軸對(duì)稱》定向測(cè)試試題_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《軸對(duì)稱》定向測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A和點(diǎn)B為圓心,以相同的長(zhǎng)(大于

AB)為半徑作弧,兩弧相交于點(diǎn)M和點(diǎn)N,作直線MN交AB于點(diǎn)D,交BC于點(diǎn)E.若AC=3,AB=5,則DE等于(

A.2 B. C. D.2、如圖是4×4的正方形網(wǎng)格,其中已有3個(gè)小方格涂成了黑色.現(xiàn)在要從其余13個(gè)白色小方格中選出一個(gè)也涂成黑色,與原來3個(gè)黑色方格組成的圖形成為軸對(duì)稱圖形,則符合要求的白色小正方格有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、以下是清華大學(xué)、北京大學(xué)、上海交通大學(xué)、浙江大學(xué)的?;?,其中是軸對(duì)稱圖形的是()A. B.C. D.4、如圖,△ABC中,AB=AC,DE是AB的垂直平分線交AB于點(diǎn)E,交AC于點(diǎn)D,連接BD;若BD⊥AC,則∠CBD的度數(shù)是(

)A.22° B.22.5° C.24° D.24.5°5、已知點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,則點(diǎn)的坐標(biāo)為(

)A. B. C. D.6、如圖,在和中,,連接交于點(diǎn),連接.下列結(jié)論:①;②;③平分;④平分.其中正確的個(gè)數(shù)為().A.4 B.3 C.2 D.17、如圖,∠A=30°,∠C′=60°,△ABC與△A′B′C′關(guān)于直線l對(duì)稱,則∠B度數(shù)為(

)A. B. C. D.8、如圖,在中,,的周長(zhǎng)10,和的平分線交于點(diǎn),過點(diǎn)作分別交、于、,則的長(zhǎng)為(

)A.10 B.6 C.4 D.不確定9、在中,,,,則的長(zhǎng)度為(

)A. B. C. D.10、如圖,在矩形中,,,動(dòng)點(diǎn)滿足,則點(diǎn)到、兩點(diǎn)距離之和的最小值為(

)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,將一張長(zhǎng)方形紙條折疊,若,則的度數(shù)為__________.2、如圖,平分,,的延長(zhǎng)線交于點(diǎn),若,則的度數(shù)為__________.3、如圖,等邊三角形ABC的邊長(zhǎng)為2,D,E是AC,BC上兩個(gè)動(dòng)點(diǎn),且AD=CE,AE,BD交于點(diǎn)F,連接CF,則CF長(zhǎng)度的最小值為______.4、如圖,將長(zhǎng)方形紙片按如圖所示的方式折疊,為折痕,點(diǎn)落在,點(diǎn)落在點(diǎn)在同一直線上,則_______度;5、如圖,一束光沿方向,先后經(jīng)過平面鏡、反射后,沿方向射出,已知,,則_________.6、如圖,過邊長(zhǎng)為16的等邊△ABC的邊AB上的一點(diǎn)P,作PE⊥AC于點(diǎn)E,點(diǎn)Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連接PQ交AC邊于點(diǎn)D,則DE的長(zhǎng)為_____.7、BC是等腰△ABC和等腰△DBC的公共底(A與D不重合),則直線AD必是__________的垂直平分線.8、如圖,△ABC中,AB=AC,D、E分別在CA、BA的延長(zhǎng)線上,連接BD、CE,且∠D+∠E=180°,若BD=6,則CE的長(zhǎng)為__.9、如圖,在△ABC中,DE是BC的垂直平分線,垂足為E,交AC于點(diǎn)D,若AB=6,AC=9,則△ABD的周長(zhǎng)是__.10、如圖,在△ABC中,∠C=90°,DE是AB的垂直平分線,AD恰好平分∠BAC,若DE=1,則BC的長(zhǎng)是_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在中,,于點(diǎn)D,平分交于點(diǎn),交于點(diǎn)F.求證:.2、平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,分別是軸,軸正半軸上一點(diǎn),過點(diǎn)作軸,,點(diǎn)在第一象限,,連接交軸于點(diǎn),,連接.(1)請(qǐng)通過計(jì)算說明;(2)求證;(3)請(qǐng)直接寫出的長(zhǎng)為.3、如圖,是邊長(zhǎng)為2的等邊三角形,是頂角為120°的等腰三角形,以點(diǎn)為頂點(diǎn)作,點(diǎn)、分別在、上.(1)如圖①,當(dāng)時(shí),則的周長(zhǎng)為______;(2)如圖②,求證:.4、已知,ABC三條邊的長(zhǎng)分別為.(1)若,當(dāng)ABC為等腰三角形,求ABC的周長(zhǎng).(2)化簡(jiǎn):.5、已知三邊長(zhǎng)a,b,c滿足,試判斷的形狀并求周長(zhǎng).-參考答案-一、單選題1、C【解析】【詳解】根據(jù)勾股定理求出BC,根據(jù)線段垂直平分線性質(zhì)求出AE=BE,根據(jù)勾股定理求出AE,再根據(jù)勾股定理求出DE即可.解:在RtABC中,由勾股定理得:BC==4,連接AE,從作法可知:DE是AB的垂直評(píng)分線,根據(jù)性質(zhì)AE=BE,在Rt△ACE中,由勾股定理得:AC+CE=AE,即3+(4-AE)=AE,解得:AE=,在Rt△ADE中,AD=AB=,由勾股定理得:DE+()=(),解得:DE=.故選C.“點(diǎn)睛”:本題考查了線段垂直平分線性質(zhì),勾股定理的應(yīng)用,能靈活運(yùn)用勾股定理得出方程是解此題的關(guān)鍵.2、C【解析】【分析】根據(jù)軸對(duì)稱的性質(zhì)可直接進(jìn)行求解.【詳解】解:如圖所示:,共3個(gè),故選:C.【考點(diǎn)】本題主要考查軸對(duì)稱圖形的性質(zhì),熟練掌握軸對(duì)稱的性質(zhì)是解題的關(guān)鍵.3、B【解析】【分析】利用軸對(duì)稱圖形定義進(jìn)行依次分析即可.【詳解】A.不是軸對(duì)稱圖形,故此選項(xiàng)不合題意;B.是軸對(duì)稱圖形,故此選項(xiàng)符合題意;C.不是軸對(duì)稱圖形,故此選項(xiàng)不合題意;D.不是軸對(duì)稱圖形,故此選項(xiàng)不合題意;故選:B.【考點(diǎn)】此題主要考查了軸對(duì)稱圖形,關(guān)鍵是掌握如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形叫做軸對(duì)稱圖形.4、B【解析】【分析】先利用線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)求得∠A、∠ABD、∠ABC,最后利用三角形內(nèi)角和定理求解即可.【詳解】解:∵BD⊥AC,DE是AB的垂直平分線,∴∠ADB=90°,DA=DB,∴∠A=∠ABD=45°,∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠CBD=∠ABC-∠ABD=67.5°-45°=22.5°,.故選B.【考點(diǎn)】本題主要考查了線段垂直平分線、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識(shí)點(diǎn),明確題意、靈活應(yīng)用相關(guān)知識(shí)點(diǎn)成為解答本題的關(guān)鍵.5、B【解析】【分析】根據(jù)關(guān)于軸對(duì)稱的性質(zhì):橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即可得解.【詳解】由題意,得與點(diǎn)關(guān)于軸對(duì)稱點(diǎn)的坐標(biāo)是,故選:B.【考點(diǎn)】此題主要考查關(guān)于軸對(duì)稱的點(diǎn)坐標(biāo)的求解,熟練掌握,即可解題.6、B【解析】【分析】根據(jù)題意逐個(gè)證明即可,①只要證明,即可證明;②利用三角形的外角性質(zhì)即可證明;④作于,于,再證明即可證明平分.【詳解】解:∵,∴,即,在和中,,∴,∴,①正確;∴,由三角形的外角性質(zhì)得:∴°,②正確;作于,于,如圖所示:則°,在和中,,∴,∴,∴平分,④正確;正確的個(gè)數(shù)有3個(gè);故選B.【考點(diǎn)】本題是一道幾何的綜合型題目,難度系數(shù)偏上,關(guān)鍵在于利用三角形的全等證明來證明線段相等,角相等.7、C【解析】【分析】由已知條件,根據(jù)軸對(duì)稱的性質(zhì)可得∠C=∠C′=30°,利用三角形的內(nèi)角和等于180°可求答案.【詳解】∵△ABC與△A′B′C′關(guān)于直線l對(duì)稱,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°?30°-60°=90°.故選:C.【考點(diǎn)】主要考查了軸對(duì)稱的性質(zhì)與三角形的內(nèi)角和是180度;求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°.8、B【解析】【分析】根據(jù)平行線、角平分線和等腰三角形的關(guān)系可證DO=DB和EO=EC,從而得出DE=DB+EC,然后根據(jù)的周長(zhǎng)即可求出AB.【詳解】解:∵∴∠OBC=∠DOB∵BO平分∴∠OBC=∠DBO∴∠DOB=∠DBO∴DO=DB同理可證:EO=EC∴DE=DO+EO=DB+EC∵,的周長(zhǎng)10,∴AD+AE+DE=10∴AD+AE+DB+EC=10∴AB+AC=10∴AB=10-AC=6故選B.【考點(diǎn)】此題考查的是平行線的性質(zhì)、角平分線的定義和等腰三角形的判定,掌握平行線、角平分線和等腰三角形的關(guān)系是解決此題的關(guān)鍵.9、C【解析】【分析】根據(jù)直角三角形的性質(zhì)30°所對(duì)的直角邊等于斜邊的一半求解即可.【詳解】∵在Rt△ABC中,,,∴,∴∵,∴3BC=12cm.∴BC=4cm∴AB=8cm故選:C【考點(diǎn)】本題考查了含30度角的直角三角形的性質(zhì),掌握含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.10、D【解析】【分析】由,可得△PAB的AB邊上的高h(yuǎn)=2,表明點(diǎn)P在平行于AB的直線EF上運(yùn)動(dòng),且兩平行線間的距離為2;延長(zhǎng)FC到G,使FC=CG,連接AG交EF于點(diǎn)H,則點(diǎn)P與H重合時(shí),PA+PB最小,在Rt△GBA中,由勾股定理即可求得AG的長(zhǎng),從而求得PA+PB的最小值.【詳解】解:設(shè)△PAB的AB邊上的高為h∵∴∴h=2表明點(diǎn)P在平行于AB的直線EF上運(yùn)動(dòng),且兩平行線間的距離為2,如圖所示∴BF=2∵四邊形ABCD為矩形∴BC=AD=3,∠ABC=90゜∴FC=BC-BF=3-2=1延長(zhǎng)FC到G,使CG=FC=1,連接AG交EF于點(diǎn)H∴BF=FG=2∵EF∥AB∴∠EFG=∠ABC=90゜∴EF是線段BG的垂直平分線∴PG=PB∵PA+PB=PA+PG≥AG∴當(dāng)點(diǎn)P與點(diǎn)H重合時(shí),PA+PB取得最小值A(chǔ)G在Rt△GBA中,AB=5,BG=2BF=4,由勾股定理得:即PA+PB的最小值為故選:D.【考點(diǎn)】本題是求兩條線段和的最小值問題,考查了矩形的性質(zhì),勾股定理,線段垂直平分線的性質(zhì)、兩點(diǎn)之間線段最短等知識(shí),難點(diǎn)在于確定點(diǎn)P運(yùn)動(dòng)的路徑,路徑確定后就是典型的將軍飲馬問題.二、填空題1、130°【解析】【分析】延長(zhǎng)DC到點(diǎn)E,如圖,根據(jù)平行線的性質(zhì)可得∠BCE=∠ABC=25°,根據(jù)折疊的性質(zhì)可得∠ACB=∠BCE=25°,進(jìn)一步即可求出答案.【詳解】解:延長(zhǎng)DC到點(diǎn)E,如圖:∵AB∥CD,∴∠BCE=∠ABC=25°,由折疊可得:∠ACB=∠BCE=25°,∵∠BCE+∠ACB+∠ACD=180°,∴∠ACD=180°﹣∠BCE﹣∠ACB=180°﹣25°﹣25°=130°,故答案為:130°.【考點(diǎn)】此題主要考查了平行線的性質(zhì)和折疊的性質(zhì),正確添加輔助線、熟練掌握平行線的性質(zhì)是解決問題的關(guān)鍵.2、【解析】【分析】如圖,連接,延長(zhǎng)與交于點(diǎn)利用等腰三角形的三線合一證明是的垂直平分線,從而得到再次利用等腰三角形的性質(zhì)得到:從而可得答案.【詳解】解:如圖,連接,延長(zhǎng)與交于點(diǎn)平分,,是的垂直平分線,故答案為:【考點(diǎn)】本題考查的是等腰三角形的性質(zhì),掌握等腰三角形的三線合一是解題的關(guān)鍵.3、【解析】【分析】由AD=CE,可知點(diǎn)F的路徑是一段弧,即當(dāng)點(diǎn)D運(yùn)動(dòng)到AC的中點(diǎn)時(shí),CF長(zhǎng)度的最小,即點(diǎn)F為△ABC的中心,過B作于,過A點(diǎn)作交于點(diǎn),則可知,由△ABC是等邊三角形,BC=2,得,進(jìn)而可知,則CF長(zhǎng)度的最小值是.【詳解】解:∵AD=CE,∴點(diǎn)F的路徑是一段弧,∴當(dāng)點(diǎn)D運(yùn)動(dòng)到AC的中點(diǎn)時(shí),CF長(zhǎng)度的最小,即點(diǎn)F為△ABC的中心,過B作于,過A點(diǎn)作交于點(diǎn),∴,∵△ABC是等邊三角形,BC=2,∴,∴.∴CF長(zhǎng)度的最小值是.故答案為:.【考點(diǎn)】本題考查等邊三角形的性質(zhì),三角形中心的定義,求線段的最小值,解題的關(guān)鍵是能夠構(gòu)造合適的輔助線求解.4、【解析】【分析】由折疊的性質(zhì)可得,,再由角的和差及平角的定義即可求出答案.【詳解】解:由題意得:,,∵在同一直線上,∴.故答案為:90.【考點(diǎn)】本題主要考查了折疊的性質(zhì)和平角的定義,屬于基本題型,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.5、40°##40度【解析】【分析】根據(jù)入射角等于反射角,可得,根據(jù)三角形內(nèi)角和定理求得,進(jìn)而即可求解.【詳解】解:依題意,,∵,,,∴,.故答案為:40.【考點(diǎn)】本題考查了軸對(duì)稱的性質(zhì),三角形內(nèi)角和定理的應(yīng)用,掌握軸對(duì)稱的性質(zhì)是解題的關(guān)鍵.6、8【解析】【分析】根據(jù)題意,作出合適的輔助線,然后根據(jù)全等三角形的判定和性質(zhì)可以求得DE的長(zhǎng),本題得以解決.【詳解】解:作QF⊥AC,交AC的延長(zhǎng)線于點(diǎn)F,則∠QFC=90°,∵△ABC是等邊三角形,PE⊥AC于點(diǎn)E,∴∠A=∠ACB=60°,∠PEA=90°,∴∠PEA=∠QFC,∵∠ACB=∠QCF,∴∠A=∠QCF,在△PEA和△QFC中,,∴△PEA≌△QFC(AAS),∴AE=CF,PE=QF,∵AC=AE+EC=16,∴EF=CF+EC=16,∵∠PED=90°,∠QFD=90°,∴∠PED=∠QFD,在△PED和△QFD中,,∴△PED≌△QFD(AAS),∴ED=FD,∵ED+FD=EF=16,∴DE=8,故答案為:8.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)、等邊三角形的性質(zhì),解答本題的關(guān)鍵是明確題意,利用等三角形的判定與性質(zhì)和數(shù)形結(jié)合的思想解答.7、BC【解析】【分析】根據(jù)題意作圖,再由“到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上”及“兩點(diǎn)確定一條直線”即可解答.【詳解】如圖,根據(jù)題意得AB=AC,DB=DC,∴點(diǎn)A、D都在BC的垂直平分線上.∵兩點(diǎn)確定一條直線,∴直線AD是BC的垂直平分線.故答案為:BC.【考點(diǎn)】此題考查了線段垂直平分線性質(zhì)的逆定理及直線的公理,屬基礎(chǔ)題.8、6【解析】【分析】在AD上截取AF=AE,連接BF,易得△ABF≌△ACE,根據(jù)全等三角形的性質(zhì)可得∠BFA=∠E,CE=BF,則有∠D=∠DFB,然后根據(jù)等腰三角形的性質(zhì)可求解.【詳解】解:在AD上截取AF=AE,連接BF,如圖所示:AB=AC,∠FAB=∠EAC,,BF=EC,∠BFA=∠E,∠D+∠E=180°,∠BFA+∠DFB=180°,∠DFB=∠D,BF=BD,BD=6,9、15【解析】【分析】根據(jù)線段的垂直平分線的性質(zhì)得到DB=DC,根據(jù)三角形的周長(zhǎng)公式計(jì)算即可.【詳解】解:∵DE是BC的垂直平分線,∴DB=DC,∴△ABD的周長(zhǎng)=AB+AD+BD=AB+AD+DC=AB+AC=15,故答案為15.【考點(diǎn)】本題考查的是線段的垂直平分線的性質(zhì),掌握線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等是解題的關(guān)鍵.10、3【解析】【分析】根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AD=BD,再根據(jù)等邊對(duì)等角的性質(zhì)求出∠DAB=∠B,然后根據(jù)角平分線的定義與直角三角形兩銳角互余求出∠B=30°,再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出BD,然后求解即可.【詳解】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分線,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=30°,∴BD=2DE=2,∴BC=BD+CD=1+2=3,故答案為3.【考點(diǎn)】本題考查了角平分線的定義和性質(zhì),線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),直角三角形30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),屬于基礎(chǔ)題,熟記性質(zhì)是解題的關(guān)鍵.三、解答題1、見解析【解析】【分析】根據(jù)角平分線的性質(zhì)得到∠ABF=∠CBF,再根據(jù)余角的性質(zhì)得到∠ABF+∠AFB=∠CBF+∠BED=90°,再結(jié)合題意根據(jù)等腰三角形的判定和性質(zhì)即可得到結(jié)論.【詳解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【考點(diǎn)】本題考查等腰三角形的判定和性質(zhì)、余角的性質(zhì)和角平分線的性質(zhì),熟練掌握等腰三角形的性質(zhì)是解題的關(guān)鍵.2、(1)證明見解析;(2)證明見解析;(3).【解析】【分析】(1)先根據(jù)點(diǎn)A坐標(biāo)可得OA的長(zhǎng),再根據(jù)即可得證;(2)如圖(見解析),延長(zhǎng)至點(diǎn),使得,連接,先根據(jù)三角形全等的判定定理與性質(zhì)可得,再根據(jù)直角三角形的性質(zhì)和得出,然后根據(jù)三角形全等的判定定理與性質(zhì)即可得證;(3)先由題(2)兩個(gè)三角形全等可得,再根據(jù)平行線的性質(zhì)得出,從而有,然后根據(jù)等腰三角形的定義(等角對(duì)等邊)即可得.【詳解】(1),即;(2)如圖,延長(zhǎng)至點(diǎn),使得,連接,軸,即;(3)由(2)已證,軸(等角對(duì)等邊)故答案為:5.【考點(diǎn)】本題考查了三角形全等的判定定理與性質(zhì)、等腰三角形的定義、平行線的性質(zhì)等知識(shí)點(diǎn),較難的是題(2),通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.3、(1)4;(2)見解析【解析】【分析】(1)首先證明△BDM≌△CDN,進(jìn)而得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論