版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數學上冊《軸對稱》章節(jié)測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、下列命題中,屬于假命題的是(
)A.邊長相等的兩個等邊三角形全等 B.斜邊相等的兩個等腰直角三角形全等C.周長相等的兩個三角形全等 D.底邊和頂角對應相等的兩個等腰三角形全等2、已知的周長是,,則下列直線一定為的對稱軸的是A.的邊的中垂線 B.的平分線所在的直線C.的邊上的中線所在的直線 D.的邊上的高所在的直線3、小軍同學在網格紙上將某些圖形進行平移操作,他發(fā)現平移前后的兩個圖形所組成的圖形可以是軸對稱圖形.如圖所示,現在他將正方形從當前位置開始進行一次平移操作,平移后的正方形的頂點也在格點上,則使平移前后的兩個正方形組成軸對稱圖形的平移方向有(
)A.3個 B.4個 C.5個 D.無數個4、如圖,在中,,,,,則的長為(
).A. B. C. D.5、在平面直角坐標系中,若點P(a-3,1)與點Q(2,b+1)關于x軸對稱,則a+b的值是(
)A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在中,,,分別以點A,B為圓心,大于的長為半徑作弧,兩弧分別相交于點M,N,作直線,交于點D,連接,則的度數為_____.2、如圖,在中,,,AB的垂直平分線MN交AC于D點,連接BD,則的度數是________.3、已知,點P為內一點,點A為OM上一點,點B為ON上一點,當的周長取最小值時,的度數為_______________.4、已知:如圖,在中,點在邊上,,則_______度.5、如圖,在△ABC中,AD⊥BC,垂足為點D,CE是邊AB上的中線,如果CD=BE,∠B=40°,那么∠BCE=_____度.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,,,求和的度數.2、在中,,D為BC延長線上一點,點E為線段AC,CD的垂直平分線的交點,連接EA,EC,ED.(1)如圖1,當時,則_______°;(2)當時,①如圖2,連接AD,判斷的形狀,并證明;②如圖3,直線CF與ED交于點F,滿足.P為直線CF上一動點.當的值最大時,用等式表示PE,PD與AB之間的數量關系為_______,并證明.3、如圖,點P是∠AOB外的一點,點Q與P關于OA對稱,點R與P關于OB對稱,直線QR分別交OA、OB于點M、N,若PM=PN=4,MN=5.(1)求線段QM、QN的長;(2)求線段QR的長.4、在學習矩形的過程中,小明遇到了一個問題:在矩形中,是邊上的一點,試說明的面積與矩形的面積之間的關系.他的思路是:首先過點作的垂線,將其轉化為證明三角形全等,然后根據全等三角形的面積相等使問題得到解決.請根據小明的思路完成下面的作圖與填空:證明:用直尺和圓規(guī),過點作的垂線,垂足為(只保留作圖?跡).在和中,∵,∴.又,∴__________________①∵,∴__________________②又__________________③∴.同理可得__________________④∴.5、如圖所示,在三角形ABC中,,,作的平分線與AC交于點E,求證:.-參考答案-一、單選題1、C【解析】【分析】根據全等三角形的判定定理,等腰三角形的性質,等邊三角形的性質,直角三角形的性質,逐一判斷選項,即可得到答案.【詳解】解:A、邊長相等的兩個等邊三角形全等,是真命題,故A不符合題意;B、斜邊相等的兩個等腰直角三角形全等,是真命題,故B不符合題意;C、周長相等的兩個三角形不一定全等,原命題是假命題,故C符合題意;D、底邊和頂角對應相等的兩個等腰三角形全等,是真命題,故D不符合題意.故選:C.【考點】本題考查了命題與定理,牢記有關的性質、定義及定理是解決此類題目的關鍵.2、C【解析】【分析】首先判斷出是等腰三角形,AB是底邊,然后根據等腰三角形的性質和對稱軸的定義判斷即可.【詳解】解:∵,,∴,∴是等腰三角形,AB是底邊,∴一定為的對稱軸的是的邊上的中線所在的直線,故選:C.【考點】本題考查了等腰三角形的判定和性質以及對稱軸的定義,判斷出是等腰三角形,AB是底邊是解題的關鍵.3、C【解析】【分析】結合正方形的特征,可知平移的方向只有5個,向上,下,右,右上45°,右下45°方向,否則兩個圖形不軸對稱.【詳解】因為正方形是軸對稱圖形,有四條對稱軸,因此只要沿著正方形的對稱軸進行平移,平移前后的兩個圖形組成的圖形一定是軸對稱圖形,觀察圖形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移時,平移前后的兩個圖形組成的圖形都是軸對稱圖形,故選C.【考點】本題考查了圖形的平移、軸對稱圖形等知識,熟練掌握正方形的結構特征是解本題的關鍵.4、B【解析】【分析】根據等腰三角形性質求出∠B,求出∠BAC,求出∠DAC=∠C,求出AD=DC=4cm,根據含30度角的直角三角形性質求出BD,即可求出答案.【詳解】∵AB=AC,∠C=30°,∴∠B=30°,∵AB⊥AD,AD=4cm,∴BD=8cm,∵∠ADB=60°∠C=30°,∴∠DAC=∠C=30°,∴CD=AD=4cm,∴BC=BD+CD=8+4=12cm.故選B.【考點】本題考查了等腰三角形的性質,含30度角的直角三角形性質,三角形的內角和定理的應用,解此題的關鍵是求出BD和DC的長.5、C【解析】【分析】直接利用關于軸對稱點的性質:橫坐標不變,縱坐標互為相反數,即可得出,的值,進而得出答案.【詳解】解:點與點關于軸對稱,,,,,則.故選:C.【考點】此題主要考查了關于軸對稱點的性質,正確記憶關于軸對稱點的符號關系是解題關鍵.二、填空題1、##50度【解析】【分析】根據作圖可知,,根據直角三角形兩個銳角互余,可得,根據即可求解.【詳解】解:∵在中,,,∴,由作圖可知是的垂直平分線,,,,故答案為:.【考點】本題考查了基本作圖,垂直平分線的性質,等邊對等角,直角三角形的兩銳角互余,根據題意分析得出是的垂直平分線,是解題的關鍵.2、15°【解析】【分析】根據等腰三角形兩底角相等,求出∠ABC的度數,再根據線段垂直平分線上的點到線段兩端點的距離相等,可得AD=BD,根據等邊對等角的性質,可得∠ABD=∠A,然后求∠DBC的度數即可.【詳解】∵AB=AC,∠A=50°,∴∠ABC=(180°?∠A)=(180°?50°)=65°,∵MN垂直平分線AB,∴AD=BD,∴∠ABD=∠A=50°,∴∠DBC=∠ABC?∠ABD=65°?50°=15°.故答案為:15°.【考點】考查等腰三角形的性質,線段垂直平分線的性質,掌握垂直平分線的性質是解題的關鍵.3、80°【解析】【分析】如圖,分別作P關于OM、ON的對稱點,然后連接兩個對稱點即可得到A、B兩點,由此即可得到△PAB的周長取最小值時的情況,并且求出∠APB度數.【詳解】解:如圖,分別作P關于OM、ON的對稱點P1、P2,然后連接兩個對稱點即可得到A、B兩點,∴△PAB即為所求的三角形,根據對稱性知道:∠APO=∠AP1O,∠BPO=∠BP2O,還根據對稱性知道:∠P1OP2=2∠MON,OP1=OP2,而∠MON=50°,∴∠P1OP2=100°,∴∠AP1O=∠BP2O=40°,∴∠APB=2×40°=80°.故答案為80°.4、40【解析】【分析】根據等邊對等角得到,再根據三角形外角的性質得到,故,由三角形的內角和即可求解的度數.【詳解】解:∵,∴,∴,∵,∴,∴,故答案為:40.【考點】本題考查等腰三角形的性質、三角形外角的性質、三角形的內角和,熟練掌握幾何知識并靈活運用是解題的關鍵.5、20.【解析】【分析】連接ED,再加上AD⊥BC,利用直角三角形斜邊上的中線等于斜邊的一半,很容易可以推出△ECD為等腰三角形,根據等腰三角形的性質:等邊對等角,以及外角性質即可求出∠BCE的度數.【詳解】如圖,連接ED,∵AD⊥BC,∴△ABD是直角三角形,∵CE是邊AB上的中線,∴ED=AB=BE,∴∠EDB=∠B=40°,又∵CD=BE,∴ED=CD,∴∠DEC=∠DCE,∵∠EDB是△DEC的外角,∴∠EDB=∠DEC+∠DCE=2∠DCE=40°,∴∠DCE=∠EDB=20°,∵∠DCE即∠BCE,∴∠BCE=20°.【考點】本題考查的是直角三角形的性質,等腰三角形的性質,掌握直角三角形中,斜邊上的中線等于斜邊的一半是解題的關鍵.三、解答題1、65°;32.5°【解析】【分析】由題意,在△ABC中,AB=AD=DC,∠BAD=50°,根據等腰三角形的性質可以求出底角,再根據三角形內角與外角的關系即可求出內角∠C.【詳解】∵AB=AD,∴△ABD是等腰三角形∵∠BAD+∠B+∠ADB=180°∴∠B=∠ADB=×(180°-∠BAD)=×(180°﹣50°)=65°∵AD=DC,∴∠C=∠DAC∵∠ADB=∠C+∠DAC=2∠C∴∠C=∠ADB=×65°=【考點】本題考查等腰三角形的性質,三角形的內角和定理及內角與外角的關系.利用三角形的內角求角的度數是一種常用的方法,要熟練掌握.2、(1)80;(2)是等邊三角形;(3).【解析】【分析】(1)根據垂直平分線性質可知,再結合等腰三角形性質可得,,利用平角定義和四邊形內角和定理可得,由此求解即可;(2)根據(1)的結論求出即可證明是等邊三角形;(3)根據利用對稱和三角形兩邊之差小于第三邊,找到當的值最大時的P點位置,再證明對稱點與AD兩點構成三角形為等邊三角形,利用旋轉全等模型即可證明,從而可知,再根據30°直角三角形性質可知即可得出結論.【詳解】解:(1)∵點E為線段AC,CD的垂直平分線的交點,∴,∴,,∴,∵,∴,∵,∴,∵在中,,,∴,∴,故答案為:.(2)①結論:是等邊三角形.證明:∵在中,,,∴,由(1)得:,,∴是等邊三角形.②結論:.證明:如解圖1,取D點關于直線AF的對稱點,連接、;∴,∵,等號僅P、E、三點在一條直線上成立,如解圖2,P、E、三點在一條直線上,由(1)得:,又∵,∴,又∵,,∴,∵點D、點是關于直線AF的對稱點,∴,,∴是等邊三角形,∴,,∵是等邊三角形,∴,,∴,∴,在和中,,∴(SAS)∴,∵,∴,在中,,,∴,∴【考點】本題是三角形綜合題,主要考查了等腰三角形、等邊三角形的性質和判定,全等三角形性質和判定等知識點,解題關鍵是利用對稱將轉化為三角形三邊關系找到P的位置,并證明對稱點與AD兩點構成三角形為等邊三角形.3、(1)4,1;(2)5【解析】【分析】(1)利用軸對稱的性質求出MQ即可解決問題;(2)利用軸對稱的性質求出NR即可解決問題.【詳解】(1)∵P,Q關于OA對稱,∴OA垂直平分線段PQ,∴MQ=MP=4,∵MN=5,∴QN=MN﹣MQ=5﹣4=1.(2)∵P,R關于OB對稱,∴OB垂直平分線段PR,∴NR=NP=4,∴QR=QN+NR=1+4=5.【考點】本題考查軸對稱的性質,解題的關鍵是理解題意,熟練掌握軸對稱的性質屬于中考??碱}型.4、、、、【解析】【分析】過點作的垂線,垂足為,分別利用AAS證得,,利用全等三角形的面積相等即可求解.【詳解】證明:用直尺和圓規(guī),過點作的垂線,垂足為(只保留作圖?跡).如圖所示,在和中,∵,∴.又,∴①∵,∴②又③∴.同理可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋼結構標準化設計技術方法
- 樂清2022年事業(yè)編招聘考試模擬試題及答案解析16
- 2026屆遼寧省葫蘆島市高三上學期期末考試歷史試題(含答案)
- 邵陽職院考試題庫及答案
- 鉗工知識競賽試題及答案
- 辯論培訓課件
- 北師大版數學三年級上冊期末評價(A卷)(含答案)
- 四川省綿陽市游仙區(qū)2024-2025學年八年級上學期期末地理試題(含答案)
- 輔警特色培訓課程
- 2025 小學三年級科學下冊保護植物的重要性教育課件
- 復方蒲公英注射液與復發(fā)性泌尿系統(tǒng)感染的關聯
- 鐵路電話區(qū)號-鐵路專網區(qū)號-鐵路電話普通電話互打方法
- 山西省太原市2023-2024學年高二上學期期末數學試題(解析版)
- 當代中國社會分層
- 呆滯存貨處理流程
- GB/T 16895.6-2014低壓電氣裝置第5-52部分:電氣設備的選擇和安裝布線系統(tǒng)
- GB/T 11018.1-2008絲包銅繞組線第1部分:絲包單線
- GB 31633-2014食品安全國家標準食品添加劑氫氣
- 麻風病防治知識課件整理
- 消防工程監(jiān)理實施細則
- 權利的游戲雙語劇本-第Ⅰ季
評論
0/150
提交評論