2025年江蘇省新沂市中考數學能力檢測試卷及完整答案詳解【有一套】_第1頁
2025年江蘇省新沂市中考數學能力檢測試卷及完整答案詳解【有一套】_第2頁
2025年江蘇省新沂市中考數學能力檢測試卷及完整答案詳解【有一套】_第3頁
2025年江蘇省新沂市中考數學能力檢測試卷及完整答案詳解【有一套】_第4頁
2025年江蘇省新沂市中考數學能力檢測試卷及完整答案詳解【有一套】_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省新沂市中考數學能力檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,在方格紙上建立的平面直角坐標系中,將繞點按順時針方向旋轉90°,得到,則點的坐標為(

).A. B.C. D.2、下列汽車標志中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.3、如圖,在△ABC中,∠BAC=130°,將△ABC繞點C逆時針旋轉得到△DEC,點A,B的對應點分別為D,E,連接AD.當點A,D,E在同一條直線上時,則∠BAD的大小是()A.80° B.70° C.60° D.50°4、下面是由一些完全相同的小立方塊搭成的幾何體從三個方向看到的形狀圖.搭成這個幾何體所用的小立方塊的個數是()A.個 B.個 C.個 D.個5、如圖,的半徑為6,將劣弧沿弦翻折,恰好經過圓心O,點C為優(yōu)弧上的一個動點,則面積的最大值是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、若為圓內接四邊形,則下列哪個選項可能成立(

)A. B.C. D.2、如圖,在△ABC中,AB=BC,將△ABC繞點B順時針旋轉a度,得到△A1BC1,A1B交AC于點E,A1C1分別交AC,BC于點D,F,下列結論:其中正確的有(

).A.∠CDF=a度B.A1E=CFC.DF=FCD.BE=BF3、如圖,的內切圓(圓心為點O)與各邊分別相切于點D,E,F,連接.以點B為圓心,以適當長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線.下列說法正確的是(

)A.射線一定過點O B.點O是三條中線的交點C.若是等邊三角形,則 D.點O不是三條邊的垂直平分線的交點4、下列說法正確的是(

)A.“射擊運動員射擊一次,命中靶心”是隨機事件B.某彩票的中獎機會是1%,買100張一定會中獎C.拋擲一枚質地均勻的硬幣兩次,則兩次都是“正面朝上”的概率是D.某校有3200名學生,為了解學生最喜歡的課外體育運動項目,隨機抽取了200名學生,其中有85名學生表示最喜歡的項目是跳繩,估計該校最喜歡的課外體育運動項目為跳繩的有1360人5、如圖,拋物線過點,對稱軸是直線.下列結論正確的是(

)A.B.C.若關于x的方程有實數根,則D.若和是拋物線上的兩點,則當時,第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,△ABC內接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____2、如圖,正方形ABCD是邊長為2,點E、F是AD邊上的兩個動點,且AE=DF,連接BE、CF,BE與對角線AC交于點G,連接DG交CF于點H,連接BH,則BH的最小值為_______.3、一個直角三角形的斜邊長cm,兩條直角邊長的和是6cm,則這個直角三角形外接圓的半徑為______cm,直角三角形的面積是________.4、圓錐的底面直徑是80cm,母線長90cm.它的側面展開圖的圓心角和圓錐的全面積依次是______.5、如圖,在中,,,.繞點B順時針方向旋轉45°得到,點A經過的路徑為弧,點C經過的路徑為弧,則圖中陰影部分的面積為______.(結果保留)四、簡答題(2小題,每小題10分,共計20分)1、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點O在AB上,以點O為圓心,OB為半徑的圓經過點D,交BC于點E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結果保留).2、某超市銷售一種商品,每件成本為50元,銷售人員經調查發(fā)現,銷售單價為100元時,每月的銷售量為50件,而銷售單價每降低2元,則每月可多售出10件,且要求銷售單價不得低于成本.(1)求該商品每月的銷售量y(件)與銷售單價x(元)之間的函數關系式;(不需要求自變量取值范圍)(2)若使該商品每月的銷售利潤為4000元,并使顧客獲得更多的實惠,銷售單價應定為多少元?(3)超市的銷售人員發(fā)現:當該商品每月銷售量超過某一數量時,會出現所獲利潤反而減小的情況,為了每月所獲利潤最大,該商品銷售單價應定為多少元?五、解答題(4小題,每小題10分,共計40分)1、某水果店標價為10元/kg的某種水果經過兩次降價后價格為8.1元/kg,并且兩次降價的百分率相同.時間/天x銷量/kg120-x儲藏和損耗費用/元3x2-64x+400(1)求該水果每次降價的百分率;(2)從第二次降價的第1天算起,第x天(x為整數)的銷量及儲藏和損耗費用的相關信息如下表所示,已知該水果的進價為4.1元/kg,設銷售該水果第x天(1≤x<10)的利潤為377元,求x的值.2、在平面直角坐標系xOy中,的半徑為2.點P,Q為外兩點,給出如下定義:若上存在點M,N,使得P,Q,M,N為頂點的四邊形為矩形,則稱點P,Q是的“成對關聯點”.(1)如圖,點A,B,C,D橫、縱坐標都是整數.在點B,C,D中,與點A組成的“成對關聯點”的點是______;(2)點在第一象限,點F與點E關于x軸對稱.若點E,F是的“成對關聯點”,直接寫出t的取值范圍;(3)點G在y軸上.若直線上存在點H,使得點G,H是的“成對關聯點”,直接寫出點G的縱坐標的取值范圍.3、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當其中一點到達終點后,另外一點也隨之停止運動.(1)如果P、Q分別從A、B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請說明理由.4、如圖,在⊙O中,點E是弦CD的中點,過點O,E作直徑AB(AE>BE),連接BD,過點C作CFBD交AB于點G,交⊙O于點F,連接AF.求證:AG=AF.-參考答案-一、單選題1、A【解析】【分析】根據網格結構作出旋轉后的圖形,然后根據平面直角坐標系寫出點B′的坐標即可.【詳解】△A′B′O如圖所示,點B′(2,1).故選A.【考點】本題考查了坐標與圖形變化,熟練掌握網格結構,作出圖形是解題的關鍵.2、C【分析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:C.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、A【分析】根據三角形旋轉得出,,根據點A,D,E在同一條直線上利用鄰補角關系求出,根據等腰三角形的性質即可得到∠DAC=50°,由此即可求解.【詳解】證明:∵繞點C逆時針旋轉得到,∴,,∴∠ADC=∠DAC,∵點A,D,E在同一條直線上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故選A.【點睛】本題考查三角形旋轉性質,鄰補角的性質,等腰三角形的性質與判定,解題的關鍵在于熟練掌握旋轉的性質.4、D【分析】從俯視圖中可以看出最底層小正方體的個數及形狀,從主視圖和左視圖可以看出每一層小正方體的層數和個數,從而算出總的個數.【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個正方體,第二層有1個正方體,所以搭成這個幾何體所用的小立方塊的個數是6,故選D.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.5、C【分析】如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,解直角三角形求出AB,求出CT的最大值,可得結論.【詳解】解:如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,由題意可得AB垂直平分線段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH?CT,∴CT?6+3=9,∴CT的最大值為9,∴△ABC的面積的最大值為=27,故選:C.【點睛】本題考查垂徑定理、三角函數、三角形的面積、垂線段最短等知識,解題的關鍵是求出CT的最大值,屬于中考??碱}型.二、多選題1、BD【解析】【分析】根據圓內接四邊形的性質得出∠A+∠C=∠B+∠D=180°,再逐個判斷即可.【詳解】解:∵四邊形ABCD是圓內接四邊形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;B.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;C.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;D.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;故選:BD.【考點】本題考查了圓周角定理和圓內接四邊形的性質,注意:圓內接四邊形的對角互補.2、ABD【解析】【分析】根據等腰三角形的性質由BA=BC得∠A=∠C,再根據旋轉的性質得BA=BA1=BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,而根據對頂角相等得∠BFC1=∠DFC,于是可根據三角形內角和定理得到∠CDF=∠FBC1=α;利用“ASA”證明△BAE≌△BC1F,則BE=BF,所以A1E=CF;由于∠CDF=α,則只有當旋轉角等于∠C時才有DF=FC.【詳解】解:∵BA=BC,∴∠A=∠C,∵△ABC繞點B順時針旋轉α度,得到△A1BC1,∴BA=BA1,BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,∵∠BFC1=∠DFC,∴∠CDF=∠FBC1=α,所以A正確,∴BA=BA1=BC=BC1,在△BAE和△BC1F中,∴△BAE≌△BC1F(ASA),∴BE=BF,故D正確而BA1=BC,∴A1E=CF,所以B正確;∵∠CDF=α,∴當旋轉角等于∠C時,DF=FC,所以C錯誤;故選ABD.【考點】本題主要考查了旋轉的性質,全等三角形的性質與判定,等腰三角形的性質,三角形內角和定理,解題的關鍵在于能夠熟練掌握相關知識進行求解.3、AC【解析】【分析】根據三角形內切圓的性質逐個判斷可得出答案.【詳解】A、以點B為圓心,以適當長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線,由此可得BP是角平分線,所以射線一定過點O,說法正確,選項符合題意;B、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;C、當是等邊三角形時,可以證得D、F、E分別是邊的中點,根據中位線概念可得,選項符合題意;D、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;故選:AC.【考點】本題考查了三角形內切圓的特點和性質,解題的關鍵是能與其它知識聯系起來,加以證明選項的正確.4、ACD【解析】【分析】根據隨機事件的定義(隨機事件是指在一定條件下可能發(fā)生也可能不發(fā)生的事件)可判斷A;由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎可判斷B;利用列舉法將所有可能列舉出來,求滿足條件的概率即可判斷C;根據計算公式列出算式,即可判斷D.【詳解】解:A、“射擊運動員射擊一次,命中靶心”是隨機事件,選項正確;B、由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎,選項說法錯誤,不符合題意;C、拋擲一枚質地均勻的硬幣兩次,所有可能出現的結果有:(正,正),(正,反),(反,正),(反,反),則兩次都是“正面朝上”的概率是,選項正確;D、根據計算公式該項人數等于該項所占百分比乘以總人數,,選項正確,符合題意.故選:ACD.【考點】本題主要考查隨機事件的定義,概率發(fā)生的可能性、求隨機事件的概率與求某項的人數,根據等可能事件的概率公式求解是解題關鍵.5、D【解析】【詳解】解:A.∵拋物線開口向下,∴a<0,∵對稱軸在y軸左側,∴a、b同號,∴b<0,∵拋物線與y軸交點在正半軸上,∴c>0,∴abc>0,故此選項不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過點,對稱軸是直線,∴拋物線與x軸另一交點為(2,0),∴當x=2時,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項不符合題意;C.∵-=-1,∴b=2a,∵當x=2時,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關于x的方程有實數根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(x1,y1)到對稱軸的距離大于點(x2,y2)到對稱軸的距離,∴y1<y2,故此選項符合題意;故選:D.【考點】本題考查二次函數圖象與系數的關系,二次函數的性質,二次函數與一元二次方程的聯系,熟練掌握二次函數圖象性質是解題的關鍵.三、填空題1、【解析】【分析】連接OA,OC,根據∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數,根據題意作出常用輔助線是解題關鍵.2、##【分析】延長AG交CD于M,如圖1,可證△ADG≌△DGC可得∠GCD=∠DAM,再證△ADM≌△DFC可得DF=DM=AE,可證△ABE≌△ADM,可得H是以AB為直徑的圓上一點,取AB中點O,連接OD,OH,根據三角形的三邊關系可得不等式,可解得DH長度的最小值.【詳解】解:延長AG交CD于M,如圖1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴點H是以AB為直徑的圓上一點.如圖2,取AB中點O,連接OD,OH,∵AB=AD=2,O是AB中點,∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值為-1,故答案為:-1.【點睛】本題考查正方形的性質,全等三角形的判定和性質,勾股定理,關鍵是證點H是以AB為直徑的圓上一點.3、4【分析】設一直角邊長為x,另一直角邊長為(6-x)根據勾股定理,解一元二次方程求出,根據這個直角三角形的斜邊長為外接圓的直徑,可求外接圓的半徑為cm,利用三角形面積公式求即可.【詳解】解:設一直角邊長為x,另一直角邊長為(6-x),∵三角形是直角三角形,∴根據勾股定理,整理得:,解得,這個直角三角形的斜邊長為外接圓的直徑,∴外接圓的半徑為cm,三角形面積為.故答案為;.【點睛】本題考查直角三角形的外接圓,直角所對弦性質,勾股定理,一元二次方程,三角形面積,掌握以上知識是解題關鍵.4、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關鍵在于運用扇形的弧長與面積公式進行求解.難點在于求出公式中的未知量.5、##【分析】設與AC相交于點D,過點D作,垂足為點E,根據勾股定理逆定理可得為直角三角形,根據三邊關系可得,根據題意及等角對等邊得出,在中,利用正弦函數可得,結合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設與AC相交于點D,過點D作,垂足為點E,∵,,,∴,∴為直角三角形,∴,∵繞點B順時針方向旋轉45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點睛】題目主要考查勾股定理逆定理,旋轉的性質,等角對等邊的性質,正切函數,扇形面積等,理解題意,結合圖形,綜合運用這些知識點是解題關鍵.四、簡答題1、(1)見解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE是等邊三角形即可解決問題.【詳解】(1)證明:連接OD,如圖,∵BD為∠ABC平分線,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切線.(2)過O作OG⊥BC,連接OE,則四邊形ODCG為矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,則△OBE是等邊三角形,∴陰影部分面積為﹣×2×=.【考點】本題考查切線的判定和性質,等邊三角形的判定和性質,思想的面積公式等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.2、(1);(2)70元;(3)80元.【解析】【分析】(1)明確題意,找到等量關系求出函數關系式即可;(2)根據題意,按照等量關系“銷售量(售價成本)”列出方程,求解即可得到該商品此時的銷售單價;(3)設每月所獲利潤為,按照等量關系列出二次函數,并根據二次函數的性質求得最值即可.【詳解】解:(1)∵依題意得,∴與的函數關系式為;(2)∵依題意得,即,解得:,,∵∴當該商品每月銷售利潤為,為使顧客獲得更多實惠,銷售單價應定為元;(3)設每月總利潤為,依題意得∵,此圖象開口向下∴當時,有最大值為:(元),∴當銷售單價為元時利潤最大,最大利潤為元,故為了每月所獲利潤最大,該商品銷售單價應定為元.【考點】本題考查了二次函數在實際生活中的應用,根據題意找到等量關系并掌握二次函數求最值的方法是解題的關鍵.五、解答題1、(1)10%(2)9【解析】【分析】(1)設該水果每次降價的百分率為y,根據題意列出一元二次方程即可求解;(2)根據題意列出一元二次方程即可求解.(1)設該水果每次降價的百分率為y,依題意,得10(1-y)2=8.1,解得y1=0.1=10%,y2=1.9(不合題意,舍去).答:該水果每次降價的百分率為10%.(2)依題意,得,解得x1=9,x2=11(舍去).答:x的值為9.【考點】本題考查了一元二次方程的應用,準確理解題意列出一元二次方程是解答本題的關鍵.2、(1)B和C;(2);(3)【分析】(1)根據圖形可確定與點A組成的“成對關聯點”的點;(2)如圖,點E在直線上,點F在直線上,當點E在線段上,點F在線段上時,有的“成對關聯點”,求出即可得出的取值范圍;(3)分類討論:點G在上,點G在的下方和點G在的上方,構造的“成對關聯點”,即可求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論