考點攻克人教版8年級數(shù)學(xué)上冊《軸對稱》定向練習試題(含詳細解析)_第1頁
考點攻克人教版8年級數(shù)學(xué)上冊《軸對稱》定向練習試題(含詳細解析)_第2頁
考點攻克人教版8年級數(shù)學(xué)上冊《軸對稱》定向練習試題(含詳細解析)_第3頁
考點攻克人教版8年級數(shù)學(xué)上冊《軸對稱》定向練習試題(含詳細解析)_第4頁
考點攻克人教版8年級數(shù)學(xué)上冊《軸對稱》定向練習試題(含詳細解析)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖是4×4的正方形網(wǎng)格,其中已有3個小方格涂成了黑色.現(xiàn)在要從其余13個白色小方格中選出一個也涂成黑色,與原來3個黑色方格組成的圖形成為軸對稱圖形,則符合要求的白色小正方格有()A.1個 B.2個 C.3個 D.4個2、下列圖形中,是軸對稱圖形的是()A. B.C. D.3、如圖,若是等邊三角形,,是的平分線,延長到,使,則(

)A.7 B.8 C.9 D.104、如圖,在平面直角坐標系中,△ABC位于第二象限,點B的坐標是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關(guān)于于x軸對稱的△A2B2C2,則點B的對應(yīng)點B2的坐標是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)5、如圖,在中,,為邊上的中線,,則的度數(shù)為(

).A.55° B.65° C.75° D.45°6、如圖,∠A=30°,∠C′=60°,△ABC與△A′B′C′關(guān)于直線l對稱,則∠B度數(shù)為(

)A. B. C. D.7、如圖,△ABC和△ECD都是等腰直角三角形,△ABC的頂點A在△ECD的斜邊DE上.下列結(jié)論:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD是直角三角形.其中正確的有()A.1個 B.2個 C.3個 D.4個8、如圖,在中,DE是AC的垂直平分線,,的周長為13cm,則的周長為(

)A.16cm B.13cm C.19cm D.10cm9、等腰三角形兩邊長為3,6,則第三邊的長是(

)A.3 B.6 C. D.3或610、已知點P(2021,﹣2021),則點P關(guān)于x軸對稱的點的坐標是(

)A.(﹣2021,2021) B.(﹣2021,﹣2021)C.(2021,2021) D.(2021,﹣2021)第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,,若,則________.2、小明將一張正方形紙片按如圖所示順序折疊成紙飛機,當機翼展開在同一平面時(機翼間無縫隙),的度數(shù)是________.3、如圖已知OA=a,P是射線ON上一動點,∠AON=60°,當OP=________

時,△AOP為等邊三角形.4、如圖,BH是鈍角三角形ABC的高,AD是角平分線,且2∠C=90°-∠ABH,若CD=4,ΔABC的面積為12,則AD=_____.5、一輛汽車的牌照在車下方水坑中的像是,則這輛汽車的牌照號碼應(yīng)為_____.6、如圖,將長方形紙片按如圖所示的方式折疊,為折痕,點落在,點落在點在同一直線上,則_______度;7、如圖,依據(jù)尺規(guī)作圖的痕跡,計算∠α=________°.8、如圖,在中,的中垂線交于點,交于點,已知,的周長為22,則______.9、如圖,等邊三角形紙片ABC的邊長為6,E,F(xiàn)是邊BC上的三等分點.分別過點E,F(xiàn)沿著平行于BA,CA方向各剪一刀,則剪下的△DEF的周長是_____.10、如圖,在中,,以為邊,作,滿足,為上一點,連接,,連接.下列結(jié)論中正確的是________(填序號)①;②;③若,則;④.三、解答題(5小題,每小題6分,共計30分)1、在①,②這兩個條件中選擇其中一個,補充在下面的問題中,請完成問題的解答.問題:如圖,中,,點D,E在邊BC上(不與點B,C重合)連結(jié)AD,AE.若______,求證:.2、已知:如圖,AD是等腰三角形ABC的底邊BC上的中線,DE∥AB,交AC于點E.求證:△AED是等腰三角形.3、已知,ABC三條邊的長分別為.(1)若,當ABC為等腰三角形,求ABC的周長.(2)化簡:.4、如圖,在ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(點D不與點B、C重合),連接AD,作∠ADE=40°,DE交線段AC于點E.(1)當∠BDA=115°時,∠EDC=______°,∠AED=______°;(2)線段DC的長度為何值時,△ABD≌△DCE,請說明理由;(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求∠BDA的度數(shù);若不可以,請說明理由.5、如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.(1)求∠CBE的度數(shù);(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數(shù).-參考答案-一、單選題1、C【解析】【分析】根據(jù)軸對稱的性質(zhì)可直接進行求解.【詳解】解:如圖所示:,共3個,故選:C.【考點】本題主要考查軸對稱圖形的性質(zhì),熟練掌握軸對稱的性質(zhì)是解題的關(guān)鍵.2、C【解析】【分析】依據(jù)軸對稱圖形的定義逐項分析即可得出C選項正確.【詳解】解:因為選項A、B、D中的圖形都不能通過沿某條直線折疊直線兩旁的部分能達到完全重合,所以它們不符合軸對稱圖形的定義和要求,因此選項A、B、D中的圖形都不是軸對稱圖形,而C選項中的圖形沿上下邊中點的連線折疊后,折痕的左右兩邊能完全重合,因此符合軸對稱圖形的定義和要求,因此C選項中的圖形是軸對稱圖形,故選:C.【考點】本題主要考查了軸對稱圖形的定義,學(xué)生需要掌握軸對稱圖形的定義內(nèi)容,理解軸對稱圖形的特征,方能解決問題找對圖形,同時也考查了學(xué)生對圖形的感知力和空間想象的能力.3、C【解析】【分析】根據(jù)等邊三角形三線合一得到BD垂直平分CA,所以CD=,另有,從而求出BE的長度.【詳解】解:由于△ABC是等邊三角形,則其三邊相等,BD也是AC的垂直平分線,即AB=BC=CA=6,AD=DC=3,已知CE=CD,則CE=3.而BE=BC+CE,因此BE=6+3=9.故答案選C.【考點】本題考查了等邊三角形性質(zhì),看到等邊三角形應(yīng)想到三條邊相等,三線合一.4、D【解析】【分析】首先利用平移的性質(zhì)得到△A1B1C1中點B的對應(yīng)點B1坐標,進而利用關(guān)于x軸對稱點的性質(zhì)得到△A2B2C2中B2的坐標,即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點B(-5,2)的對應(yīng)點B1坐標為(-1,2),則與△A1B1C1關(guān)于于x軸對稱的△A2B2C2中B2的坐標為(-1,-2),故選D.【考點】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關(guān)鍵.5、B【解析】【分析】首先根據(jù)三角形的三線合一的性質(zhì)得到AD⊥BC,然后根據(jù)直角三角形的兩銳角互余得到答案即可.【詳解】∵AB=AC,AD是BC邊上的中線,∴AD⊥BC,∠BAD=∠CAD,∴∠B+∠BAD=90°,∵∠B=25°,∴∠BAD=65°,故選:B.【考點】本題考查了等腰三角形的性質(zhì),了解等腰三角形底邊的高、底邊的中線及頂角的平分線互相重合是解答本題的關(guān)鍵.6、C【解析】【分析】由已知條件,根據(jù)軸對稱的性質(zhì)可得∠C=∠C′=30°,利用三角形的內(nèi)角和等于180°可求答案.【詳解】∵△ABC與△A′B′C′關(guān)于直線l對稱,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°?30°-60°=90°.故選:C.【考點】主要考查了軸對稱的性質(zhì)與三角形的內(nèi)角和是180度;求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°.7、C【解析】【分析】根據(jù)等腰直角三角形的性質(zhì)得到CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,則可根據(jù)“SAS”證明△ACE≌△BCD,于是可對①進行判斷;利用三角形外角性質(zhì)得到∠DAB+∠BAC=∠E+∠ACE,加上∠CAB=∠E=45°,則可得對②進行判斷;利用CE=CD和三角形三邊之間的關(guān)系可對③進行判斷;根據(jù)△ACE≌△BCD得到∠BDC=∠E=45°,則可對④進行判斷.【詳解】∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,∵∠ACE+∠ACD=∠ACD+∠BCD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),所以①正確;∵∠DAC=∠E+∠ACE,即∠DAB+∠BAC=∠E+∠ACE,而∠CAB=∠E=45°,∴∠DAB=∠ACE,所以②正確;∵AE+AC>CE,CE=CD,∴AE+AC>CD,所以③錯誤;∵△ACE≌△BCD,∴∠BDC=∠E=45°,∵∠CDE=45°,∴∠ADB=∠ADC+∠BDC=45°+45°=90°,∴△ADB為直角三角形,所以④正確.故選:C.【考點】本題是考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),直角三角形的判定與性質(zhì)等知識,熟練掌握全等三角形的判定與性質(zhì)和等腰直角三角形的性質(zhì)是解題的關(guān)鍵.8、C【解析】【分析】根據(jù)線段垂直平分線性質(zhì)得出,求出AC和的長,即可求出答案.【詳解】解:∵DE是AC的垂直平分線,,∴,,∵的周長為13cm,∴,∴,∴的周長為,故選:C.【考點】考查垂直平分線的性質(zhì),三角形周長問題,解題的關(guān)鍵是掌握垂直平分線的性質(zhì).9、B【解析】【分析】題目給出等腰三角形有兩條邊長為3和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應(yīng)用三角形的三邊關(guān)系驗證能否組成三角形.【詳解】由等腰三角形的概念,得第三邊的長可能為3或6,當?shù)谌吺?時,而3+3=6,所以應(yīng)舍去;則第三邊長為6.故選B.【考點】此題考查等腰三角形的性質(zhì)和三角形的三邊關(guān)系解題關(guān)鍵在于已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應(yīng)驗證各種情況是否能構(gòu)成三角形進行解答.10、C【解析】【分析】直接利用關(guān)于x軸對稱點的性質(zhì):橫坐標相同,縱坐標互為相反數(shù)進而得出答案.【詳解】解:∵點P(2021,﹣2021),∴點P關(guān)于x軸對稱的點的坐標是(2021,2021).故選:C.【考點】此題考查關(guān)于x軸、y軸對稱的點的坐標,熟記關(guān)于軸對稱坐標的特點是解題的關(guān)鍵.二、填空題1、100【解析】【分析】先根據(jù)EC=EA.∠CAE=40°得出∠C=40°,再由三角形外角的性質(zhì)得出∠AED的度數(shù),利用平行線的性質(zhì)即可得出結(jié)論.【詳解】∵EC=EA,∠CAE=40°,∴∠C=∠CAE=40°,∵∠DEA是△ACE的外角,∴∠AED=∠C+∠CAE=40°+40°=80°,∵AB∥CD,∴∠BAE+∠AED=180°∴∠BAE=100°.【考點】本題考查的是等邊對等角,三角形的外角,平行線的性質(zhì),熟知兩直線平行同旁內(nèi)角互補是解答此題的關(guān)鍵.2、45°【解析】【分析】根據(jù)折疊過程可知,在折疊過程中角一直是軸對稱的折疊.【詳解】在折疊過程中角一直是軸對稱的折疊,故答案為45°【考點】考核知識點:軸對稱.理解折疊的本質(zhì)是關(guān)鍵.3、a【解析】【分析】根據(jù)“有一內(nèi)角為60度的等腰三角形是等邊三角形”進行解答.【詳解】∵∠AON=60°,∴當OA=OP=a時,△AOP為等邊三角形.故答案是:a.【考點】本題考查了等邊三角形的判定.等邊三角形的判定方法:(1)由定義判定:三條邊都相等的三角形是等邊三角形.(2)判定定理1:三個角都相等的三角形是等邊三角形.(3)判定定理2:有一個角是60°的等腰三角形是等邊三角形.4、3【解析】【分析】根據(jù)三角形的外角性質(zhì)和已知條件易證明∠ABC=∠C,則可判斷△ABC為等腰三角形,然后根據(jù)等腰三角形的性質(zhì)可得AD⊥BC,BD=CD=4,再利用三角形面積公式即可求出AD的長.【詳解】解:∵BH為△ABC的高,∴∠AHB=90°,∴∠BAH=90°﹣∠ABH,而2∠C=90°﹣∠ABH,∴∠BAH=2∠C,∵∠BAH=∠C+∠ABC,∴∠ABC=∠C,∴△ABC為等腰三角形,∵AD是角平分線,∴AD⊥BC,BD=CD=4,∵ΔABC的面積為12,∴×AD×BC=12,即×AD×8=12,∴AD=3.故答案為:3.【考點】本題考查了三角形的外角性質(zhì)、等腰三角形的判定和性質(zhì)以及三角形的面積,熟練掌握上述知識是解題的關(guān)鍵.5、H?8379【解析】【分析】易得所求的牌照與看到的牌照關(guān)于水平的一條直線成軸對稱,作出相應(yīng)圖形即可求解.【詳解】解:如圖所示:該車牌照號碼為:H?8379.故答案為:H?8379.【考點】本題考查軸對稱的應(yīng)用,熟練掌握軸對稱的性質(zhì)是解題關(guān)鍵.6、【解析】【分析】由折疊的性質(zhì)可得,,再由角的和差及平角的定義即可求出答案.【詳解】解:由題意得:,,∵在同一直線上,∴.故答案為:90.【考點】本題主要考查了折疊的性質(zhì)和平角的定義,屬于基本題型,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.7、56【解析】【分析】先根據(jù)矩形的性質(zhì)得出AD∥BC,故可得出∠DAC的度數(shù),由角平分線的定義求出∠EAF的度數(shù),再由EF是線段AC的垂直平分線得出∠AEF的度數(shù),根據(jù)三角形內(nèi)角和定理得出∠AFE的度數(shù),進而可得出結(jié)論.【詳解】如圖,∵四邊形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分線,∴∠EAF=∠DAC=34°.∵由作法可知,EF是線段AC的垂直平分線,∴∠AEF=90°,∴∠AFE=90°-34°=56°,∴∠α=56°.故答案為:56.8、12【解析】【分析】由的中垂線交于點,可得再利用的周長為22,列方程解方程可得答案.【詳解】解:的中垂線交于點,,的周長為22,故答案為:【考點】本題考查的是線段的垂直平分線的性質(zhì),掌握線段的垂直平分線的性質(zhì)是解題的關(guān)鍵.9、CE=故答案為6.【考點】本題主要考查全等三角形的性質(zhì)與判定及等腰三角形的性質(zhì)與判定,熟練掌握全等三角形的判定方法及等腰三角形的性質(zhì)與判定是解題的關(guān)鍵.6.6【解析】【分析】先說明△DEF是等邊三角形,再根據(jù)E,F(xiàn)是邊BC上的三等分求出BC的長,最后求周長即可.【詳解】解:∵等邊三角形紙片ABC∴∠B=∠C=60°∵DE∥AB,DF∥AC∴∠DEF=∠DFE=60°∴△DEF是等邊三角形∴DE=EF=DF∵E,F(xiàn)是邊BC上的三等分點,BC=6∴EF=2∴DE=EF=DF=2∴△DEF=DE+EF+DF=6故答案為6.【考點】本題考查了等邊三角形的判定和性質(zhì)、三等分點的意義,靈活應(yīng)用等邊三角形的性質(zhì)是正確解答本題的關(guān)鍵.10、②③④【解析】【分析】通過延長EB至E',使BE=BE',連接,構(gòu)造出全等三角形,再利用全等三角形的性質(zhì)依次分析,可得出正確的結(jié)論是②③④.【詳解】解:如圖,延長EB至E',使BE=BE',連接;∵∠ABC=90°,∴AB垂直平分EE',∴AE=AE',∴∠1=∠2,∠3=∠5,∵∠1=,∴∠E'AE=2∠1=∠CAD,∴∠E'AC=∠EAD,

又∵AD=AC,∴,∴∠5=∠4,∠ADE=∠ACB(即②正確),∴∠3=∠4;當∠6=∠1時,∠4+∠6=∠3+∠1=90°,此時,∠AME=180°-(∠4+∠6)=90°,當∠6≠∠1時,∠4+∠6≠∠3+∠1,∠4+∠6≠90°,此時,∠AME≠90°,∴①不正確;若CD∥AB,則∠7=∠BAC,∵AD=AC,∴∠7=∠ADC,∵∠CAD+∠7+∠ADC=180°,∴,

∴∠1+∠7=90°,∴∠2+∠7=90°,∴∠2+∠BAC=90°,即∠E'AC=90°,由,∴∠EAD=∠CAE'=90°,E'C=DE,∴AE⊥AD(即③正確),DE=E'B+BE+CE=2BE+CE(即④正確);故答案為:②③④.【考點】本題綜合考查了線段的垂直平分線的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)等內(nèi)容;要求學(xué)生能夠根據(jù)已知條件通過作輔助線構(gòu)造出全等三角形以及能正確運用全等三角形的性質(zhì)得到角或線段之間的關(guān)系,能進行不同的邊或角之間的轉(zhuǎn)換,考查了學(xué)生的綜合分析和數(shù)形結(jié)合的能力.三、解答題1、①或②【解析】【分析】選擇條件①,可得到,根據(jù)等角的補角相等可推出,再利用得到,則可根據(jù)“AAS”可判斷,從而得到;選擇條件②,可得到,利用得到,則可根據(jù)“ASA”可判斷,從而得到.【詳解】證明:選擇條件①的證明為:∵,∴,∴,又∵,∴,在和中,,(),∴;選擇條件②的證明為:∵,∴,又∵,∴,在和中,,()∴.故答案為:①或②【考點】本題考查了全等三角形的判定與性質(zhì)∶全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當?shù)呐卸l件.本題也考查了等腰三角形的性質(zhì)、等角的補角相等的知識.2、見解析【解析】【分析】根據(jù)等腰三角形的性質(zhì)得到∠BAD=∠CAD,根據(jù)平行線的性質(zhì)得到∠ADE=∠BAD,等量代換得到∠ADE=∠CAD于是得到結(jié)論.【詳解】解:∵△ABC是等腰三角形,AB=AC,AD是底邊BC上的中線,∴∠BAD=∠CAD,∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=∠CAD,∴AE=ED,∴△AED是等腰三角形.【考點】本題主要考查等腰三角形的判定與性質(zhì)以及平行線的性質(zhì),熟練掌握等腰三角形的判定和性質(zhì)定理是解題的關(guān)鍵.3、(1)△ABC的周長為10;(2).【解析】【分析】(1)利用非負數(shù)的性質(zhì)求出a與b的值,即可確定出三角形周長;(2)根據(jù)三角形三邊滿足的條件是,兩邊和大于第三邊,兩邊的差小于第三邊,根據(jù)此來確定絕對值內(nèi)的式子的正負,從而化簡計算即可.【詳解】解:(1)∵,∴a-2=0,b-4=0,∴a=2,b=4,∵△ABC為等腰三角形,當2為腰時,則三邊為2,2,4,而2+2<4,不能組成三角形,舍去;當2為底時,則三邊為2,4,4,而2+4>4,能組成三角形,∴△ABC的周長為2+4+4=10;(2)∵△ABC三條邊的長分別為a、b、c,∴,,,即,,∴.【考點】本題主要考查了等腰三角形的性質(zhì),三角形的三邊關(guān)系,以及絕對值的計算,第(2)問的關(guān)鍵是先根據(jù)三角形三邊的關(guān)系來判定絕對值內(nèi)式子的正負.4、(1)25°,65°;(2)2,理由見詳解;(3)可以,110°或80°.【解析】【分析】(1)利用鄰補角的性質(zhì)和三角形內(nèi)角和定理解題;(2)當DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)當∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形.【詳解】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論