難點解析人教版8年級數(shù)學上冊《軸對稱》綜合測試試卷(含答案詳解)_第1頁
難點解析人教版8年級數(shù)學上冊《軸對稱》綜合測試試卷(含答案詳解)_第2頁
難點解析人教版8年級數(shù)學上冊《軸對稱》綜合測試試卷(含答案詳解)_第3頁
難點解析人教版8年級數(shù)學上冊《軸對稱》綜合測試試卷(含答案詳解)_第4頁
難點解析人教版8年級數(shù)學上冊《軸對稱》綜合測試試卷(含答案詳解)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》綜合測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,中,∠BCA=90°,∠ABC=22.5°,將沿直線BC折疊,得到點A的對稱點A′,連接BA′,過點A作AH⊥BA′于H,AH與BC交于點E.下列結論一定正確的是(

)A.A′C=A′H B.2AC=EB C.AE=EH D.AE=A′H2、觀察下列作圖痕跡,所作CD為△ABC的邊AB上的中線是()A. B.C. D.3、在平面直角坐標系中.點P(1,﹣2)關于x軸的對稱點的坐標是()A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(﹣2,1)4、如圖,△ABC和△ECD都是等腰直角三角形,△ABC的頂點A在△ECD的斜邊DE上.下列結論:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD是直角三角形.其中正確的有()A.1個 B.2個 C.3個 D.4個5、將三角形紙片()按如圖所示的方式折疊,使點C落在邊上的點D,折痕為.已知,若以點B、D、F為頂點的三角形與相似,那么的長度是(

)A.2 B.或2 C. D.或26、如圖,有一張直角三角形紙片,兩直角邊AC=5cm,BC=10cm,將△ABC折疊,使點B與點A重合,折痕為DE,則△ACD的周長為()A.10cm B.12cm C.15cm D.20cm7、如圖,按以下步驟進行尺規(guī)作圖:(1)以點為圓心,任意長為半徑作弧,交的兩邊,分別于,兩點;(2)分別以點,為圓心,大于的長為半徑作弧,兩弧在內(nèi)交于點;(3)作射線,連接,,.下列結論錯誤的是(

)A.垂直平分 B. C. D.8、下列圖形中,是軸對稱圖形的是(

)A. B. C. D.9、如圖是以正方形的邊長為直徑,在正方形內(nèi)畫半圓得到的圖形,則此圖形的對稱軸有()A.2條 B.4條 C.6條 D.8條10、如圖,等邊三角形ABC中,AD⊥BC,垂足為D,點E在線段AD上,∠EBC=45°,則∠ACE等于()A.15° B.30° C.45° D.60°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、已知△ABC是等腰三角形.若∠A=40°,則△ABC的頂角度數(shù)是____.2、如圖,在△ABC中,∠C=90°,DE是AB的垂直平分線,AD恰好平分∠BAC,若DE=1,則BC的長是_____.3、如圖,將平行四邊形ABCD沿對角線BD折疊,使點A落在點處.若,則為_________.4、如圖,在一個池塘兩旁有一條筆直小路(B,C為小路端點)和一棵小樹(A為小樹位置)測得的相關數(shù)據(jù)為:米,則________米.5、如圖,在△ABC中,∠ACB的平分線交AB于點D,

DE⊥AC于點E,F為BC上一點,若DF=AD,△ACD與△CDF的面積分別為10和4,則△AED的面積為______6、如圖所示,在Rt△ABC中,∠C=90°,AC=4,BC=3,P為AB上一動點(不與A、B重合),作PE⊥AC于點E,PF⊥BC于點F,連接EF,則EF的最小值是______.7、如圖,為內(nèi)部一條射線,點為射線上一點,,點分別為邊上動點,則周長的最小值為______.8、(1)等腰三角形底邊長為6cm,一腰上的中線把它的周長分成兩部分的差為2cm,則腰長為________.(2)已知的周長為24,,于點D,若的周長為20,則AD的長為________.(3)已知等腰三角形的周長為24,腰長為x,則x的取值范圍是________.9、如圖,在△ABC中,DE是BC的垂直平分線,垂足為E,交AC于點D,若AB=6,AC=9,則△ABD的周長是__.10、如圖,在四邊形中,,,,點為邊上一點,連接.,與交于點,且,若,,則的長為_______________.三、解答題(5小題,每小題6分,共計30分)1、如圖,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC與BD相交于點O,限用無刻度直尺完成以下作圖:(1)在圖1中作線段BC的中點P;(2)在圖2中,在OB、OC上分別取點E、F,使EF∥BC.2、如圖,在中,,過的中點作,,垂足分別為點、.(1)求證:;(2)若,求的度數(shù).3、已知:如圖,為銳角,點A在射線上.求作:射線,使得.小靜的作圖思路如下:①以點A為圓心,為半徑作弧,交射線于點B,連接;②作的角平分線.射線即為所求的射線.(1)使用直尺和圓規(guī),按照小靜的作圖思路補全圖形(保留作圖痕跡);(2)完成下面的證明.證明:,(__________).是的一個外角,___________________..平分,..(__________).4、如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點D.(1)求∠ADC的度數(shù);(2)求證:DC=2DB.5、如圖,在中,,,求和的度數(shù).-參考答案-一、單選題1、B【解析】【分析】證明,即可得出正確答案.【詳解】證明:∵∠BCA=90°,∠ABC=22.5°∴,∵沿直線BC折疊,得到點A的對稱點A′,連接BA′,∴,∴,∵∠BCA=90°,∴,∵∴,即:,∴,∵AH⊥BA′,∴是等腰直角三角形,∴,,∴,在和中,∵,∴,∴,故選項正確,故選;.【考點】本題考查了折疊、等腰三角形、等腰直角三角形、三角形全等,解決本題的關鍵是證明全等,得出線段.2、B【解析】【分析】根據(jù)題意,CD為△ABC的邊AB上的中線,就是作AB邊的垂直平分線,交AB于點D,點D即為線段AB的中點,連接CD即可判斷.【詳解】解:作AB邊的垂直平分線,交AB于點D,連接CD,∴點D即為線段AB的中點,∴CD為△ABC的邊AB上的中線.故選:B.【考點】本題主要考查三角形一邊的中線的作法;作該邊的中垂線,找出該邊的中點是解題關鍵.3、A【解析】【詳解】點P(1,-2)關于x軸的對稱點的坐標是(1,2),故選A.4、C【解析】【分析】根據(jù)等腰直角三角形的性質(zhì)得到CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,則可根據(jù)“SAS”證明△ACE≌△BCD,于是可對①進行判斷;利用三角形外角性質(zhì)得到∠DAB+∠BAC=∠E+∠ACE,加上∠CAB=∠E=45°,則可得對②進行判斷;利用CE=CD和三角形三邊之間的關系可對③進行判斷;根據(jù)△ACE≌△BCD得到∠BDC=∠E=45°,則可對④進行判斷.【詳解】∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,∵∠ACE+∠ACD=∠ACD+∠BCD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),所以①正確;∵∠DAC=∠E+∠ACE,即∠DAB+∠BAC=∠E+∠ACE,而∠CAB=∠E=45°,∴∠DAB=∠ACE,所以②正確;∵AE+AC>CE,CE=CD,∴AE+AC>CD,所以③錯誤;∵△ACE≌△BCD,∴∠BDC=∠E=45°,∵∠CDE=45°,∴∠ADB=∠ADC+∠BDC=45°+45°=90°,∴△ADB為直角三角形,所以④正確.故選:C.【考點】本題是考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),直角三角形的判定與性質(zhì)等知識,熟練掌握全等三角形的判定與性質(zhì)和等腰直角三角形的性質(zhì)是解題的關鍵.5、B【解析】【分析】分兩種情況:若或若,再根據(jù)相似三角形的性質(zhì)解題【詳解】∵沿折疊后點C和點D重合,∴,設,則,以點B、D、F為頂點的三角形與相似,分兩種情況:①若,則,即,解得;②若,則,即,解得.綜上,的長為或2,故選:B.【考點】本題考查相似三角形的性質(zhì),是重要考點,掌握相關知識是解題關鍵.6、C【解析】【分析】根據(jù)圖形翻折變換的性質(zhì)得出AD=BD,故AC+(CD+AD)=AC+BC,由此即可得出結論.【詳解】∵△ADE由△BDE翻折而成,∴AD=BD.∵AC=5cm,BC=10cm,∴△ACD的周長=AC+CD+AD=AC+BC=15cm.故選C.【考點】本題考查了翻折變換,熟知圖形翻折不變性的性質(zhì)是解答此題的關鍵.7、D【解析】【分析】利用全等三角形的性質(zhì)以及線段的垂直平分線的判定解決問題即可.【詳解】解:由作圖可知,在△OCD和△OCE中,,∴△OCD≌△OCE(SSS),∴∠DCO=∠ECO,∠1=∠2,∵OD=OE,CD=CE,∴OC垂直平分線段DE,故A,B,C正確,沒有條件能證明CE=OE,故選:D.【考點】本題考查了作圖-基本作圖,全等三角形的判定和性質(zhì),線段的垂直平分線的判定等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.8、D【解析】【分析】根據(jù)“如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形”判斷即可得.【詳解】解:根據(jù)題意,A、B、C選項中均不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形;D選項能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形;故選:D【考點】本題主要考查軸對稱圖形,解題的關鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.9、B【解析】【分析】根據(jù)軸對稱的性質(zhì)即可畫出對稱軸進而可得此圖形的對稱軸的條數(shù).【詳解】解:如圖,因為以正方形的邊長為直徑,在正方形內(nèi)畫半圓得到的圖形,所以此圖形的對稱軸有4條.故選:B.【考點】本題考查了正方形的性質(zhì)、軸對稱的性質(zhì)、軸對稱圖形,解決本題的關鍵是掌握軸對稱的性質(zhì).10、A【解析】【分析】先判斷出AD是BC的垂直平分線,進而求出∠ECB=45°,即可得出結論.【詳解】解:∵等邊三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分線,∵點E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故選A.【考點】此題主要考查了等邊三角形的性質(zhì),垂直平分線的判定和性質(zhì),等腰三角形的性質(zhì),求出∠ECB是解本題的關鍵.二、填空題1、40°或100°【解析】【分析】分∠A為三角形頂角或底角兩種情況討論,即可求解.【詳解】解:當∠A為三角形頂角時,則△ABC的頂角度數(shù)是40°;當∠A為三角形底角時,則△ABC的頂角度數(shù)是180°-40°-40°=100°;故答案為:40°或100°.【考點】本題考查了等腰三角形的性質(zhì),此類題目,難點在于要分情況討論.2、3【解析】【分析】根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,再根據(jù)等邊對等角的性質(zhì)求出∠DAB=∠B,然后根據(jù)角平分線的定義與直角三角形兩銳角互余求出∠B=30°,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出BD,然后求解即可.【詳解】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分線,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=30°,∴BD=2DE=2,∴BC=BD+CD=1+2=3,故答案為3.【考點】本題考查了角平分線的定義和性質(zhì),線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),屬于基礎題,熟記性質(zhì)是解題的關鍵.3、105°.【解析】【分析】由平行四邊形的性質(zhì)和折疊的性質(zhì),得出∠ADB=∠BDG=∠DBG,由三角形的外角性質(zhì)求出∠BDG=∠DBG=∠1=25°,再由三角形內(nèi)角和定理求出∠A,即可得到結果.【詳解】∵AD∥BC,∴∠ADB=∠DBG,由折疊可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°,又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°,故答案為105°.【考點】本題考查了平行四邊形的性質(zhì),折疊的性質(zhì),三角形的外角性質(zhì),三角形內(nèi)角和定理.4、48【解析】【分析】先說明△ABC是等邊三角形,然后根據(jù)等邊三角形的性質(zhì)即可解答.【詳解】解:∵∴∠BAC=180°-60°-60°=60°∴∠BAC=∠ABC=∠BCA=60°∴△ABC是等邊三角形∴AC=BC=48米.故答案為48.【考點】本題考查了等邊三角形的判定和性質(zhì),證得△ABC是等邊三角形是解答本題的關鍵.5、3【解析】【分析】如圖(見解析),過點D作,根據(jù)角平分線的性質(zhì)可得,再利用三角形全等的判定定理得出,從而有,最后根據(jù)三角形面積的和差即可得出答案.【詳解】如圖,過點D作平分,又則解得故答案為:3.【考點】本題考查了角平分線的性質(zhì)、直角三角形全等的判定定理等知識點,通過作輔助線,構造兩個全等的三角形是解題關鍵.6、2.4【解析】【分析】連接CP,利用勾股定理列式求出AB,判斷出四邊形CFPE是矩形,根據(jù)矩形的對角線相等可得EF=CP,再根據(jù)垂線段最短可得CP⊥AB時,線段EF的值最小,然后根據(jù)三角形的面積公式列出方程求解即可.【詳解】解:如圖,連接CP.∵∠C=90°,AC=3,BC=4,∴AB===5,∵PE⊥AC,PF⊥BC,∠C=90°,∴四邊形CFPE是矩形,∴EF=CP,由垂線段最短可得CP⊥AB時,線段EF的值最小,此時,S△ABC=BC?AC=AB?CP,即×4×3=×5?CP,解得CP=2.4.故答案為:2.4.【考點】本題考查了矩形的判定與性質(zhì),垂線段最短的性質(zhì),勾股定理,判斷出CP⊥AB時,線段EF的值最小是解題的關鍵,難點在于利用三角形的面積列出方程.7、6【解析】【分析】作點P關于OA的對稱點P1,點P關于OB的對稱點P2,連結P1P2,與OA的交點即為點M,與OB的交點即為點N,則此時M、N符合題意,求出線段P1P2的長即可.【詳解】解:作點P關于OA的對稱點P1,點P關于OB的對稱點P2,連結P1P2與OA的交點即為點M,與OB的交點即為點N,△PMN的最小周長為PM+MN+PN=P1M+MN+P2N=P1P2,即為線段P1P2的長,連結OP1、OP2,則OP1=OP2=OP=6,又∵∠P1OP2=2∠AOB=60°,∴△OP1P2是等邊三角形,∴P1P2=OP1=6,即△PMN的周長的最小值是6.故答案是:6.【考點】本題考查了等邊三角形的性質(zhì)和判定,軸對稱?最短路線問題的應用,關鍵是確定M、N的位置.8、

4cm或8cm

8

【解析】【分析】(1)根據(jù)題意畫出圖形,由題意得,即可得,又由等腰三角形的底邊長為6cm,即可求得答案.(2)由△ABC的周長為24得到AB,BC的關系,由△ABD的周長為20得到AB,BD,AD的關系,再由等腰三角形的性質(zhì)知,BC為BD的2倍,故可解出AD的值.(3)設底邊長為y,再由三角形的三邊關系即可得出答案.【詳解】(1)如圖,,BD是中線由題意得存在兩種情況:①②①,∵∴②,∵∴∴腰長為:4cm或8cm故答案為:4cm或8cm.(2)∵△ABC的周長為24,∴∵∴∴∴∵的周長為20∴∴故答案為:8.(3)設底邊長為y∵等腰三角形的周長為24,腰長為x∴∴,即解得故答案為:.【考點】本題考查了三角形的綜合問題,掌握等腰三角形的性質(zhì)、等腰三角形三線合一的性質(zhì)、三角形的周長定義、三角形的三邊關系是解題的關鍵.9、15【解析】【分析】根據(jù)線段的垂直平分線的性質(zhì)得到DB=DC,根據(jù)三角形的周長公式計算即可.【詳解】解:∵DE是BC的垂直平分線,∴DB=DC,∴△ABD的周長=AB+AD+BD=AB+AD+DC=AB+AC=15,故答案為15.【考點】本題考查的是線段的垂直平分線的性質(zhì),掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.10、【解析】【分析】由,知點A,C都在BD的垂直平分線上,因此,可連接交于點,易證是等邊三角形,是等邊三角形,根據(jù)等邊三角形的性質(zhì)對三角形中的線段進行等量轉換即可求出OB,OC的長度,應用勾股定理可求解.【詳解】解:如圖,連接交于點∵,,,∴垂直平分,是等邊三角形∴,,∵∴,∴∴∴∵∴是等邊三角形∴∴,∴∴【考點】本題主要考查了等邊三角形的判定與性質(zhì)、勾股定理,綜合運用等邊三角形的判定與性質(zhì)進行線段間等量關系的轉換是解題的關鍵.三、解答題1、(1)見解析;(2)見解析.【解析】【分析】(1)延長BA和CD,它們相交于點Q,然后延長QO交BC于P,則PB=PC,根據(jù)線段垂直平分線的逆定理可證明;(2)連結AP交OB于E,連結DP交OC于F,則EF∥BC.分別證明△BEP≌△CFP,△BEP≌△CFP可得∠APB=∠DPC和∠PEF=∠PFE,根據(jù)三角形內(nèi)角和定理和平角的定義可得∠APB=∠PEF,即可證明EF//BC.【詳解】解:(1)如圖1,點P為所作,理由如下:∵∠A=∠D=90°,AC=BD,BC=CB,∴△ABC≌△DCB∴∠ABC=∠DCB,∠ACB=∠DBC∴QB=QC,OB=OC∴Q,O在BC的垂直平分線上,∴延長QO交BC于P,就有P為線段BC的中點;(2)如圖2,EF為所作.理由如下:∵△ABC≌△DCB∴AB=DC,又∵∠ABC=∠DCB,BP=PC∴△ABP≌△DCP∴∠APB=∠DPC又∵∠DBC=∠ACB,BP=PC∴△BEP≌△CFP∴PE=PF∴∠PEF=∠PFE,∵∠APB+∠DPC+∠APD=180°∠PEF+∠PFE+∠APD=180°∴∠APB=∠PEF∴EF//BC.【考點】本題考查作圖——復雜作圖,等腰三角形的性質(zhì),線段垂直平分線的逆定理,平行線的判定定理,全等三角形的判定與性質(zhì).掌握相關定理并能熟練運用是解決此題的關鍵.2、(1)證明見解析;(2)=80°【解析】【分析】(1)利用已知條件和等腰三角形的性質(zhì)證明,根據(jù)全等三角形的性質(zhì)即可證明;(2)根據(jù)三角形內(nèi)角和定理得∠B=50°,所以∠C=50°,在△ABC中利用三角形內(nèi)角和定理即可求解.【詳解】解:(1)證明:∵點D為BC的中點,∴BD=CD,∵,,∴∠DEB=∠DFC=90°在△BDE和△CDF中,∴,∴.(2)∵∴∠B=180°-(∠BDE+∠BED)=50°,∴∠C=50°,在△ABC中,=180°-(∠B+∠C)=80°,故=80°.【考點】本題考查等腰三角形的性質(zhì)、全等三角形的判定與性質(zhì)和三角形內(nèi)角和定理,熟練掌握等腰三角形的性質(zhì)并靈活應用是解題的關鍵.3、(1)見解析;(2)等邊對等角;;;內(nèi)錯角相等,兩直線平行【解析】【分析】(1)按照步驟作圖即可;(2)由作法知,OA=AB,AC是∠MAB的平分線,然后根據(jù)等腰

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論